forked from phoenix/litellm-mirror
fix(utils.py): support token counting for gpt-4-vision models
This commit is contained in:
parent
eda6ab8cdc
commit
0fffcc1579
3 changed files with 237 additions and 7 deletions
78
litellm/tests/test_img_resize.py
Normal file
78
litellm/tests/test_img_resize.py
Normal file
|
@ -0,0 +1,78 @@
|
|||
from typing import Literal
|
||||
|
||||
|
||||
def calculage_img_tokens(
|
||||
width,
|
||||
height,
|
||||
mode: Literal["low", "high", "auto"] = "auto",
|
||||
base_tokens: int = 85, # openai default - https://openai.com/pricing
|
||||
):
|
||||
if mode == "low":
|
||||
return base_tokens
|
||||
elif mode == "high" or mode == "auto":
|
||||
resized_width, resized_height = resize_image_high_res(
|
||||
width=width, height=height
|
||||
)
|
||||
tiles_needed_high_res = calculate_tiles_needed(resized_width, resized_height)
|
||||
tile_tokens = (base_tokens * 2) * tiles_needed_high_res
|
||||
total_tokens = base_tokens + tile_tokens
|
||||
return total_tokens
|
||||
|
||||
|
||||
def resize_image_high_res(width, height):
|
||||
# Maximum dimensions for high res mode
|
||||
max_short_side = 768
|
||||
max_long_side = 2000
|
||||
|
||||
# Determine the longer and shorter sides
|
||||
longer_side = max(width, height)
|
||||
shorter_side = min(width, height)
|
||||
|
||||
# Calculate the aspect ratio
|
||||
aspect_ratio = longer_side / shorter_side
|
||||
|
||||
# Resize based on the short side being 768px
|
||||
if width <= height: # Portrait or square
|
||||
resized_width = max_short_side
|
||||
resized_height = int(resized_width * aspect_ratio)
|
||||
# if the long side exceeds the limit after resizing, adjust both sides accordingly
|
||||
if resized_height > max_long_side:
|
||||
resized_height = max_long_side
|
||||
resized_width = int(resized_height / aspect_ratio)
|
||||
else: # Landscape
|
||||
resized_height = max_short_side
|
||||
resized_width = int(resized_height * aspect_ratio)
|
||||
# if the long side exceeds the limit after resizing, adjust both sides accordingly
|
||||
if resized_width > max_long_side:
|
||||
resized_width = max_long_side
|
||||
resized_height = int(resized_width / aspect_ratio)
|
||||
|
||||
return resized_width, resized_height
|
||||
|
||||
|
||||
# Test the function with the given example
|
||||
def calculate_tiles_needed(
|
||||
resized_width, resized_height, tile_width=512, tile_height=512
|
||||
):
|
||||
tiles_across = (resized_width + tile_width - 1) // tile_width
|
||||
tiles_down = (resized_height + tile_height - 1) // tile_height
|
||||
total_tiles = tiles_across * tiles_down
|
||||
return total_tiles
|
||||
|
||||
|
||||
# Test high res mode with 1875 x 768 image
|
||||
resized_width_high_res = 1875
|
||||
resized_height_high_res = 768
|
||||
tiles_needed_high_res = calculate_tiles_needed(
|
||||
resized_width_high_res, resized_height_high_res
|
||||
)
|
||||
print(
|
||||
f"Tiles needed for high res image ({resized_width_high_res}x{resized_height_high_res}): {tiles_needed_high_res}"
|
||||
)
|
||||
|
||||
# If you had the original size and needed to resize and then calculate tiles:
|
||||
original_size = (10000, 4096)
|
||||
resized_size_high_res = resize_image_high_res(*original_size)
|
||||
print(f"Resized dimensions in high res mode: {resized_size_high_res}")
|
||||
tiles_needed = calculate_tiles_needed(*resized_size_high_res)
|
||||
print(f"Tiles needed for high res image {resized_size_high_res}: {tiles_needed}")
|
|
@ -119,3 +119,23 @@ def test_encoding_and_decoding():
|
|||
|
||||
|
||||
# test_encoding_and_decoding()
|
||||
|
||||
|
||||
def test_gpt_vision_token_counting():
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What’s in this image?"},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
tokens = token_counter(model="gpt-4-vision-preview", messages=messages)
|
||||
print(f"tokens: {tokens}")
|
||||
|
||||
|
||||
# test_gpt_vision_token_counting()
|
||||
|
|
146
litellm/utils.py
146
litellm/utils.py
|
@ -7,7 +7,7 @@
|
|||
#
|
||||
# Thank you users! We ❤️ you! - Krrish & Ishaan
|
||||
|
||||
import sys, re, binascii
|
||||
import sys, re, binascii, struct
|
||||
import litellm
|
||||
import dotenv, json, traceback, threading, base64
|
||||
import subprocess, os
|
||||
|
@ -2495,15 +2495,127 @@ def openai_token_counter(
|
|||
for message in messages:
|
||||
num_tokens += tokens_per_message
|
||||
for key, value in message.items():
|
||||
num_tokens += len(encoding.encode(value, disallowed_special=()))
|
||||
if key == "name":
|
||||
num_tokens += tokens_per_name
|
||||
if isinstance(value, str):
|
||||
num_tokens += len(encoding.encode(value, disallowed_special=()))
|
||||
if key == "name":
|
||||
num_tokens += tokens_per_name
|
||||
elif isinstance(value, List):
|
||||
for c in value:
|
||||
if c["type"] == "text":
|
||||
text += c["text"]
|
||||
elif c["type"] == "image_url":
|
||||
if isinstance(c["image_url"], dict):
|
||||
image_url_dict = c["image_url"]
|
||||
detail = image_url_dict.get("detail", "auto")
|
||||
url = image_url_dict.get("url")
|
||||
num_tokens += calculage_img_tokens(
|
||||
data=url, mode=detail
|
||||
)
|
||||
elif isinstance(c["image_url"], str):
|
||||
image_url_str = c["image_url"]
|
||||
num_tokens += calculage_img_tokens(
|
||||
data=image_url_str, mode="auto"
|
||||
)
|
||||
elif text is not None:
|
||||
num_tokens = len(encoding.encode(text, disallowed_special=()))
|
||||
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
|
||||
return num_tokens
|
||||
|
||||
|
||||
def resize_image_high_res(width, height):
|
||||
# Maximum dimensions for high res mode
|
||||
max_short_side = 768
|
||||
max_long_side = 2000
|
||||
|
||||
# Determine the longer and shorter sides
|
||||
longer_side = max(width, height)
|
||||
shorter_side = min(width, height)
|
||||
|
||||
# Calculate the aspect ratio
|
||||
aspect_ratio = longer_side / shorter_side
|
||||
|
||||
# Resize based on the short side being 768px
|
||||
if width <= height: # Portrait or square
|
||||
resized_width = max_short_side
|
||||
resized_height = int(resized_width * aspect_ratio)
|
||||
# if the long side exceeds the limit after resizing, adjust both sides accordingly
|
||||
if resized_height > max_long_side:
|
||||
resized_height = max_long_side
|
||||
resized_width = int(resized_height / aspect_ratio)
|
||||
else: # Landscape
|
||||
resized_height = max_short_side
|
||||
resized_width = int(resized_height * aspect_ratio)
|
||||
# if the long side exceeds the limit after resizing, adjust both sides accordingly
|
||||
if resized_width > max_long_side:
|
||||
resized_width = max_long_side
|
||||
resized_height = int(resized_width / aspect_ratio)
|
||||
|
||||
return resized_width, resized_height
|
||||
|
||||
|
||||
# Test the function with the given example
|
||||
def calculate_tiles_needed(
|
||||
resized_width, resized_height, tile_width=512, tile_height=512
|
||||
):
|
||||
tiles_across = (resized_width + tile_width - 1) // tile_width
|
||||
tiles_down = (resized_height + tile_height - 1) // tile_height
|
||||
total_tiles = tiles_across * tiles_down
|
||||
return total_tiles
|
||||
|
||||
|
||||
def get_image_dimensions(data):
|
||||
img_data = None
|
||||
|
||||
# Check if data is a URL by trying to parse it
|
||||
try:
|
||||
response = requests.get(data)
|
||||
response.raise_for_status() # Check if the request was successful
|
||||
img_data = response.content
|
||||
except Exception:
|
||||
# Data is not a URL, handle as base64
|
||||
header, encoded = data.split(",", 1)
|
||||
img_data = base64.b64decode(encoded)
|
||||
|
||||
# Try to determine dimensions from headers
|
||||
# This is a very simplistic check, primarily works with PNG and non-progressive JPEG
|
||||
if img_data[:8] == b"\x89PNG\r\n\x1a\n":
|
||||
# PNG Image; width and height are 4 bytes each and start at offset 16
|
||||
width, height = struct.unpack(">ii", img_data[16:24])
|
||||
return width, height
|
||||
elif img_data[:2] == b"\xff\xd8":
|
||||
# JPEG Image; for dimensions, SOF0 block (0xC0) gives dimensions at offset 3 for length, and then 5 and 7 for height and width
|
||||
# This will NOT find dimensions for all JPEGs (e.g., progressive JPEGs)
|
||||
# Find SOF0 marker (0xFF followed by 0xC0)
|
||||
sof = re.search(b"\xff\xc0....", img_data)
|
||||
if sof:
|
||||
# Parse SOF0 block to find dimensions
|
||||
height, width = struct.unpack(">HH", sof.group()[5:9])
|
||||
return width, height
|
||||
else:
|
||||
return None, None
|
||||
else:
|
||||
# Unsupported format
|
||||
return None, None
|
||||
|
||||
|
||||
def calculage_img_tokens(
|
||||
data,
|
||||
mode: Literal["low", "high", "auto"] = "auto",
|
||||
base_tokens: int = 85, # openai default - https://openai.com/pricing
|
||||
):
|
||||
if mode == "low" or mode == "auto":
|
||||
return base_tokens
|
||||
elif mode == "high":
|
||||
width, height = get_image_dimensions(data=data)
|
||||
resized_width, resized_height = resize_image_high_res(
|
||||
width=width, height=height
|
||||
)
|
||||
tiles_needed_high_res = calculate_tiles_needed(resized_width, resized_height)
|
||||
tile_tokens = (base_tokens * 2) * tiles_needed_high_res
|
||||
total_tokens = base_tokens + tile_tokens
|
||||
return total_tokens
|
||||
|
||||
|
||||
def token_counter(
|
||||
model="",
|
||||
text: Optional[Union[str, List[str]]] = None,
|
||||
|
@ -2522,13 +2634,33 @@ def token_counter(
|
|||
"""
|
||||
# use tiktoken, anthropic, cohere or llama2's tokenizer depending on the model
|
||||
is_tool_call = False
|
||||
num_tokens = 0
|
||||
if text == None:
|
||||
if messages is not None:
|
||||
print_verbose(f"token_counter messages received: {messages}")
|
||||
text = ""
|
||||
for message in messages:
|
||||
if message.get("content", None):
|
||||
text += message["content"]
|
||||
if message.get("content", None) is not None:
|
||||
content = message.get("content")
|
||||
if isinstance(content, str):
|
||||
text += message["content"]
|
||||
elif isinstance(content, List):
|
||||
for c in content:
|
||||
if c["type"] == "text":
|
||||
text += c["text"]
|
||||
elif c["type"] == "image_url":
|
||||
if isinstance(c["image_url"], dict):
|
||||
image_url_dict = c["image_url"]
|
||||
detail = image_url_dict.get("detail", "auto")
|
||||
url = image_url_dict.get("url")
|
||||
num_tokens += calculage_img_tokens(
|
||||
data=url, mode=detail
|
||||
)
|
||||
elif isinstance(c["image_url"], str):
|
||||
image_url_str = c["image_url"]
|
||||
num_tokens += calculage_img_tokens(
|
||||
data=image_url_str, mode="auto"
|
||||
)
|
||||
if "tool_calls" in message:
|
||||
is_tool_call = True
|
||||
for tool_call in message["tool_calls"]:
|
||||
|
@ -2539,7 +2671,7 @@ def token_counter(
|
|||
raise ValueError("text and messages cannot both be None")
|
||||
elif isinstance(text, List):
|
||||
text = "".join(t for t in text if isinstance(t, str))
|
||||
num_tokens = 0
|
||||
|
||||
if model is not None:
|
||||
tokenizer_json = _select_tokenizer(model=model)
|
||||
if tokenizer_json["type"] == "huggingface_tokenizer":
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue