forked from phoenix/litellm-mirror
Merge pull request #1952 from BerriAI/litellm_aioboto3_sagemaker
Implements aioboto3 for sagemaker
This commit is contained in:
commit
122ad77d56
9 changed files with 203 additions and 75 deletions
|
@ -31,6 +31,7 @@ jobs:
|
|||
pip install "google-generativeai>=0.3.2"
|
||||
pip install "google-cloud-aiplatform>=1.38.0"
|
||||
pip install "boto3>=1.28.57"
|
||||
pip install "aioboto3>=12.3.0"
|
||||
pip install langchain
|
||||
pip install "langfuse>=2.0.0"
|
||||
pip install numpydoc
|
||||
|
@ -124,6 +125,7 @@ jobs:
|
|||
pip install "google-generativeai>=0.3.2"
|
||||
pip install "google-cloud-aiplatform>=1.38.0"
|
||||
pip install "boto3>=1.28.57"
|
||||
pip install "aioboto3>=12.3.0"
|
||||
pip install langchain
|
||||
pip install "langfuse>=2.0.0"
|
||||
pip install numpydoc
|
||||
|
|
|
@ -4,6 +4,7 @@ import Image from '@theme/IdealImage';
|
|||
|
||||
LiteLLM supports [Microsoft Presidio](https://github.com/microsoft/presidio/) for PII masking.
|
||||
|
||||
|
||||
## Quick Start
|
||||
### Step 1. Add env
|
||||
|
||||
|
@ -21,6 +22,7 @@ litellm_settings:
|
|||
|
||||
### Step 3. Start proxy
|
||||
|
||||
|
||||
```
|
||||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
@ -52,4 +54,4 @@ litellm_settings:
|
|||
|
||||
3. LLM Response: "Hey [PERSON], nice to meet you!"
|
||||
|
||||
4. User Response: "Hey Jane Doe, nice to meet you!"
|
||||
4. User Response: "Hey Jane Doe, nice to meet you!"
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
import os, types
|
||||
import os, types, traceback
|
||||
from enum import Enum
|
||||
import json
|
||||
import requests
|
||||
|
@ -30,8 +30,11 @@ import json
|
|||
|
||||
|
||||
class TokenIterator:
|
||||
def __init__(self, stream):
|
||||
self.byte_iterator = iter(stream)
|
||||
def __init__(self, stream, acompletion: bool = False):
|
||||
if acompletion == False:
|
||||
self.byte_iterator = iter(stream)
|
||||
elif acompletion == True:
|
||||
self.byte_iterator = stream
|
||||
self.buffer = io.BytesIO()
|
||||
self.read_pos = 0
|
||||
self.end_of_data = False
|
||||
|
@ -64,6 +67,34 @@ class TokenIterator:
|
|||
self.end_of_data = True
|
||||
return "data: [DONE]"
|
||||
|
||||
def __aiter__(self):
|
||||
return self
|
||||
|
||||
async def __anext__(self):
|
||||
try:
|
||||
while True:
|
||||
self.buffer.seek(self.read_pos)
|
||||
line = self.buffer.readline()
|
||||
if line and line[-1] == ord("\n"):
|
||||
response_obj = {"text": "", "is_finished": False}
|
||||
self.read_pos += len(line) + 1
|
||||
full_line = line[:-1].decode("utf-8")
|
||||
line_data = json.loads(full_line.lstrip("data:").rstrip("/n"))
|
||||
if line_data.get("generated_text", None) is not None:
|
||||
self.end_of_data = True
|
||||
response_obj["is_finished"] = True
|
||||
response_obj["text"] = line_data["token"]["text"]
|
||||
return response_obj
|
||||
chunk = await self.byte_iterator.__anext__()
|
||||
self.buffer.seek(0, io.SEEK_END)
|
||||
self.buffer.write(chunk["PayloadPart"]["Bytes"])
|
||||
except StopAsyncIteration as e:
|
||||
if self.end_of_data == True:
|
||||
raise e # Re-raise StopIteration
|
||||
else:
|
||||
self.end_of_data = True
|
||||
return "data: [DONE]"
|
||||
|
||||
|
||||
class SagemakerConfig:
|
||||
"""
|
||||
|
@ -127,6 +158,7 @@ def completion(
|
|||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
acompletion: bool = False,
|
||||
):
|
||||
import boto3
|
||||
|
||||
|
@ -196,15 +228,16 @@ def completion(
|
|||
data = json.dumps(
|
||||
{"inputs": prompt, "parameters": inference_params, "stream": True}
|
||||
).encode("utf-8")
|
||||
## LOGGING
|
||||
request_str = f"""
|
||||
response = client.invoke_endpoint_with_response_stream(
|
||||
EndpointName={model},
|
||||
ContentType="application/json",
|
||||
Body={data},
|
||||
CustomAttributes="accept_eula=true",
|
||||
)
|
||||
""" # type: ignore
|
||||
if acompletion == True:
|
||||
response = async_streaming(
|
||||
optional_params=optional_params,
|
||||
encoding=encoding,
|
||||
model_response=model_response,
|
||||
model=model,
|
||||
logging_obj=logging_obj,
|
||||
data=data,
|
||||
)
|
||||
return response
|
||||
response = client.invoke_endpoint_with_response_stream(
|
||||
EndpointName=model,
|
||||
ContentType="application/json",
|
||||
|
@ -213,11 +246,19 @@ def completion(
|
|||
)
|
||||
|
||||
return response["Body"]
|
||||
|
||||
elif acompletion == True:
|
||||
_data = {"inputs": prompt, "parameters": inference_params}
|
||||
return async_completion(
|
||||
optional_params=optional_params,
|
||||
encoding=encoding,
|
||||
model_response=model_response,
|
||||
model=model,
|
||||
logging_obj=logging_obj,
|
||||
data=_data,
|
||||
)
|
||||
data = json.dumps({"inputs": prompt, "parameters": inference_params}).encode(
|
||||
"utf-8"
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
request_str = f"""
|
||||
response = client.invoke_endpoint(
|
||||
|
@ -302,45 +343,122 @@ def completion(
|
|||
return model_response
|
||||
|
||||
|
||||
# async def acompletion(
|
||||
# client: Any,
|
||||
# model_response: ModelResponse,
|
||||
# model: str,
|
||||
# logging_obj: Any,
|
||||
# data: dict,
|
||||
# hf_model_name: str,
|
||||
# ):
|
||||
# """
|
||||
# Use boto3 create_invocation_async endpoint
|
||||
# """
|
||||
# ## LOGGING
|
||||
# request_str = f"""
|
||||
# response = client.invoke_endpoint(
|
||||
# EndpointName={model},
|
||||
# ContentType="application/json",
|
||||
# Body={data},
|
||||
# CustomAttributes="accept_eula=true",
|
||||
# )
|
||||
# """ # type: ignore
|
||||
# logging_obj.pre_call(
|
||||
# input=data["prompt"],
|
||||
# api_key="",
|
||||
# additional_args={
|
||||
# "complete_input_dict": data,
|
||||
# "request_str": request_str,
|
||||
# "hf_model_name": hf_model_name,
|
||||
# },
|
||||
# )
|
||||
# ## COMPLETION CALL
|
||||
# try:
|
||||
# response = client.invoke_endpoint(
|
||||
# EndpointName=model,
|
||||
# ContentType="application/json",
|
||||
# Body=data,
|
||||
# CustomAttributes="accept_eula=true",
|
||||
# )
|
||||
# except Exception as e:
|
||||
# raise SagemakerError(status_code=500, message=f"{str(e)}")
|
||||
async def async_streaming(
|
||||
optional_params,
|
||||
encoding,
|
||||
model_response: ModelResponse,
|
||||
model: str,
|
||||
logging_obj: Any,
|
||||
data,
|
||||
):
|
||||
"""
|
||||
Use aioboto3
|
||||
"""
|
||||
import aioboto3
|
||||
|
||||
session = aioboto3.Session()
|
||||
async with session.client("sagemaker-runtime", region_name="us-west-2") as client:
|
||||
try:
|
||||
response = await client.invoke_endpoint_with_response_stream(
|
||||
EndpointName=model,
|
||||
ContentType="application/json",
|
||||
Body=data,
|
||||
CustomAttributes="accept_eula=true",
|
||||
)
|
||||
except Exception as e:
|
||||
raise SagemakerError(status_code=500, message=f"{str(e)}")
|
||||
response = response["Body"]
|
||||
async for chunk in response:
|
||||
yield chunk
|
||||
|
||||
|
||||
async def async_completion(
|
||||
optional_params,
|
||||
encoding,
|
||||
model_response: ModelResponse,
|
||||
model: str,
|
||||
logging_obj: Any,
|
||||
data: dict,
|
||||
):
|
||||
"""
|
||||
Use aioboto3
|
||||
"""
|
||||
import aioboto3
|
||||
|
||||
session = aioboto3.Session()
|
||||
async with session.client("sagemaker-runtime", region_name="us-west-2") as client:
|
||||
## LOGGING
|
||||
request_str = f"""
|
||||
response = client.invoke_endpoint(
|
||||
EndpointName={model},
|
||||
ContentType="application/json",
|
||||
Body={data},
|
||||
CustomAttributes="accept_eula=true",
|
||||
)
|
||||
""" # type: ignore
|
||||
logging_obj.pre_call(
|
||||
input=data["inputs"],
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"request_str": request_str,
|
||||
},
|
||||
)
|
||||
encoded_data = json.dumps(data).encode("utf-8")
|
||||
try:
|
||||
response = await client.invoke_endpoint(
|
||||
EndpointName=model,
|
||||
ContentType="application/json",
|
||||
Body=encoded_data,
|
||||
CustomAttributes="accept_eula=true",
|
||||
)
|
||||
except Exception as e:
|
||||
raise SagemakerError(status_code=500, message=f"{str(e)}")
|
||||
response = await response["Body"].read()
|
||||
response = response.decode("utf8")
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=data["inputs"],
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
## RESPONSE OBJECT
|
||||
completion_response = json.loads(response)
|
||||
try:
|
||||
completion_response_choices = completion_response[0]
|
||||
completion_output = ""
|
||||
if "generation" in completion_response_choices:
|
||||
completion_output += completion_response_choices["generation"]
|
||||
elif "generated_text" in completion_response_choices:
|
||||
completion_output += completion_response_choices["generated_text"]
|
||||
|
||||
# check if the prompt template is part of output, if so - filter it out
|
||||
if completion_output.startswith(data["inputs"]) and "<s>" in data["inputs"]:
|
||||
completion_output = completion_output.replace(data["inputs"], "", 1)
|
||||
|
||||
model_response["choices"][0]["message"]["content"] = completion_output
|
||||
except:
|
||||
raise SagemakerError(
|
||||
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(encoding.encode(data["inputs"]))
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||
)
|
||||
|
||||
model_response["created"] = int(time.time())
|
||||
model_response["model"] = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
|
||||
def embedding(
|
||||
|
|
|
@ -264,6 +264,7 @@ async def acompletion(
|
|||
or custom_llm_provider == "ollama"
|
||||
or custom_llm_provider == "ollama_chat"
|
||||
or custom_llm_provider == "vertex_ai"
|
||||
or custom_llm_provider == "sagemaker"
|
||||
or custom_llm_provider in litellm.openai_compatible_providers
|
||||
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
|
@ -1553,6 +1554,7 @@ def completion(
|
|||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
logging_obj=logging,
|
||||
acompletion=acompletion,
|
||||
)
|
||||
if (
|
||||
"stream" in optional_params and optional_params["stream"] == True
|
||||
|
@ -1560,7 +1562,7 @@ def completion(
|
|||
print_verbose(f"ENTERS SAGEMAKER CUSTOMSTREAMWRAPPER")
|
||||
from .llms.sagemaker import TokenIterator
|
||||
|
||||
tokenIterator = TokenIterator(model_response)
|
||||
tokenIterator = TokenIterator(model_response, acompletion=acompletion)
|
||||
response = CustomStreamWrapper(
|
||||
completion_stream=tokenIterator,
|
||||
model=model,
|
||||
|
|
|
@ -1907,24 +1907,7 @@ async def async_data_generator(response, user_api_key_dict):
|
|||
|
||||
|
||||
def select_data_generator(response, user_api_key_dict):
|
||||
try:
|
||||
# since boto3 - sagemaker does not support async calls, we should use a sync data_generator
|
||||
if hasattr(
|
||||
response, "custom_llm_provider"
|
||||
) and response.custom_llm_provider in ["sagemaker"]:
|
||||
return data_generator(
|
||||
response=response,
|
||||
)
|
||||
else:
|
||||
# default to async_data_generator
|
||||
return async_data_generator(
|
||||
response=response, user_api_key_dict=user_api_key_dict
|
||||
)
|
||||
except:
|
||||
# worst case - use async_data_generator
|
||||
return async_data_generator(
|
||||
response=response, user_api_key_dict=user_api_key_dict
|
||||
)
|
||||
return async_data_generator(response=response, user_api_key_dict=user_api_key_dict)
|
||||
|
||||
|
||||
def get_litellm_model_info(model: dict = {}):
|
||||
|
|
|
@ -201,6 +201,22 @@ async def test_hf_completion_tgi():
|
|||
# test_get_cloudflare_response_streaming()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_completion_sagemaker():
|
||||
# litellm.set_verbose=True
|
||||
try:
|
||||
response = await acompletion(
|
||||
model="sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4",
|
||||
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
except litellm.Timeout as e:
|
||||
pass
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_get_response_streaming():
|
||||
import asyncio
|
||||
|
||||
|
|
|
@ -876,7 +876,6 @@ async def test_sagemaker_streaming_async():
|
|||
temperature=0.7,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
complete_response = ""
|
||||
|
@ -900,6 +899,9 @@ async def test_sagemaker_streaming_async():
|
|||
pytest.fail(f"An exception occurred - {str(e)}")
|
||||
|
||||
|
||||
asyncio.run(test_sagemaker_streaming_async())
|
||||
|
||||
|
||||
def test_completion_sagemaker_stream():
|
||||
try:
|
||||
response = completion(
|
||||
|
|
|
@ -8705,6 +8705,8 @@ class CustomStreamWrapper:
|
|||
or self.custom_llm_provider == "ollama"
|
||||
or self.custom_llm_provider == "ollama_chat"
|
||||
or self.custom_llm_provider == "vertex_ai"
|
||||
or self.custom_llm_provider == "sagemaker"
|
||||
or self.custom_llm_provider in litellm.openai_compatible_endpoints
|
||||
):
|
||||
print_verbose(
|
||||
f"value of async completion stream: {self.completion_stream}"
|
||||
|
|
|
@ -7,7 +7,7 @@ backoff==2.2.1 # server dep
|
|||
pyyaml>=6.0.1 # server dep
|
||||
uvicorn==0.22.0 # server dep
|
||||
gunicorn==21.2.0 # server dep
|
||||
boto3==1.28.58 # aws bedrock/sagemaker calls
|
||||
boto3==1.34.34 # aws bedrock/sagemaker calls
|
||||
redis==5.0.0 # caching
|
||||
numpy==1.24.3 # semantic caching
|
||||
prisma==0.11.0 # for db
|
||||
|
@ -30,4 +30,5 @@ click==8.1.7 # for proxy cli
|
|||
jinja2==3.1.3 # for prompt templates
|
||||
certifi>=2023.7.22 # [TODO] clean up
|
||||
aiohttp==3.9.0 # for network calls
|
||||
aioboto3==12.3.0 # for async sagemaker calls
|
||||
####
|
Loading…
Add table
Add a link
Reference in a new issue