feat(gemini.py): add support for completion calls for gemini-pro (google ai studio)

This commit is contained in:
Krrish Dholakia 2023-12-24 09:42:45 +05:30
parent 61f41f7b72
commit 1262d89ab3
5 changed files with 272 additions and 4 deletions

View file

@ -292,6 +292,7 @@ provider_list: List = [
"openrouter",
"vertex_ai",
"palm",
"gemini",
"ai21",
"baseten",
"azure",
@ -406,6 +407,7 @@ from .llms.cohere import CohereConfig
from .llms.ai21 import AI21Config
from .llms.together_ai import TogetherAIConfig
from .llms.palm import PalmConfig
from .llms.gemini import GeminiConfig
from .llms.nlp_cloud import NLPCloudConfig
from .llms.aleph_alpha import AlephAlphaConfig
from .llms.petals import PetalsConfig

186
litellm/llms/gemini.py Normal file
View file

@ -0,0 +1,186 @@
import os, types, traceback, copy
import json
from enum import Enum
import time
from typing import Callable, Optional
from litellm.utils import ModelResponse, get_secret, Choices, Message, Usage
import litellm
import sys, httpx
from .prompt_templates.factory import prompt_factory, custom_prompt
class GeminiError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(method="POST", url="https://developers.generativeai.google/api/python/google/generativeai/chat")
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class GeminiConfig():
"""
Reference: https://ai.google.dev/api/python/google/generativeai/GenerationConfig
The class `GeminiConfig` provides configuration for the Gemini's API interface. Here are the parameters:
- `candidate_count` (int): Number of generated responses to return.
- `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response.
- `max_output_tokens` (int): The maximum number of tokens to include in a candidate. If unset, this will default to output_token_limit specified in the model's specification.
- `temperature` (float): Controls the randomness of the output. Note: The default value varies by model, see the Model.temperature attribute of the Model returned the genai.get_model function. Values can range from [0.0,1.0], inclusive. A value closer to 1.0 will produce responses that are more varied and creative, while a value closer to 0.0 will typically result in more straightforward responses from the model.
- `top_p` (float): Optional. The maximum cumulative probability of tokens to consider when sampling.
- `top_k` (int): Optional. The maximum number of tokens to consider when sampling.
"""
candidate_count: Optional[int]=None
stop_sequences: Optional[list]=None
max_output_tokens: Optional[int]=None
temperature: Optional[float]=None
top_p: Optional[float]=None
top_k: Optional[int]=None
def __init__(self,
candidate_count: Optional[int]=None,
stop_sequences: Optional[list]=None,
max_output_tokens: Optional[int]=None,
temperature: Optional[float]=None,
top_p: Optional[float]=None,
top_k: Optional[int]=None) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != 'self' and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {k: v for k, v in cls.__dict__.items()
if not k.startswith('__')
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
and v is not None}
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
api_key,
encoding,
logging_obj,
custom_prompt_dict: dict,
acompletion: bool = False,
optional_params=None,
litellm_params=None,
logger_fn=None,
):
try:
import google.generativeai as genai
except:
raise Exception("Importing google.generativeai failed, please run 'pip install -q google-generativeai")
genai.configure(api_key=api_key)
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages
)
else:
prompt = prompt_factory(model=model, messages=messages, custom_llm_provider="gemini")
## Load Config
inference_params = copy.deepcopy(optional_params)
inference_params.pop("stream", None) # palm does not support streaming, so we handle this by fake streaming in main.py
config = litellm.GeminiConfig.get_config()
for k, v in config.items():
if k not in inference_params: # completion(top_k=3) > gemini_config(top_k=3) <- allows for dynamic variables to be passed in
inference_params[k] = v
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={"complete_input_dict": {"inference_params": inference_params}},
)
## COMPLETION CALL
try:
_model = genai.GenerativeModel(f'models/{model}')
response = _model.generate_content(contents=prompt, generation_config=genai.types.GenerationConfig(**inference_params))
except Exception as e:
raise GeminiError(
message=str(e),
status_code=500,
)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=response,
additional_args={"complete_input_dict": {}},
)
print_verbose(f"raw model_response: {response}")
## RESPONSE OBJECT
completion_response = response
try:
choices_list = []
for idx, item in enumerate(completion_response.candidates):
if len(item.content.parts) > 0:
message_obj = Message(content=item.content.parts[0].text)
else:
message_obj = Message(content=None)
choice_obj = Choices(index=idx+1, message=message_obj)
choices_list.append(choice_obj)
model_response["choices"] = choices_list
except Exception as e:
traceback.print_exc()
raise GeminiError(message=traceback.format_exc(), status_code=response.status_code)
try:
completion_response = model_response["choices"][0]["message"].get("content")
except:
raise GeminiError(status_code=400, message=f"No response received. Original response - {response}")
## CALCULATING USAGE
prompt_str = ""
for m in messages:
if isinstance(m["content"], str):
prompt_str += m["content"]
elif isinstance(m["content"], list):
for content in m["content"]:
if content["type"] == "text":
prompt_str += content["text"]
prompt_tokens = len(
encoding.encode(prompt_str)
)
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
model_response["created"] = int(time.time())
model_response["model"] = "gemini/" + model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens
)
model_response.usage = usage
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass

View file

@ -346,6 +346,47 @@ def anthropic_pt(messages: list): # format - https://docs.anthropic.com/claude/r
prompt += f"{AnthropicConstants.AI_PROMPT.value}"
return prompt
def gemini_text_image_pt(messages: list):
"""
{
"contents":[
{
"parts":[
{"text": "What is this picture?"},
{
"inline_data": {
"mime_type":"image/jpeg",
"data": "'$(base64 -w0 image.jpg)'"
}
}
]
}
]
}
"""
try:
import google.generativeai as genai
except:
raise Exception("Importing google.generativeai failed, please run 'pip install -q google-generativeai")
prompt = ""
images = []
for message in messages:
if isinstance(message["content"], str):
prompt += message["content"]
elif isinstance(message["content"], list):
# see https://docs.litellm.ai/docs/providers/openai#openai-vision-models
for element in message["content"]:
if isinstance(element, dict):
if element["type"] == "text":
prompt += element["text"]
elif element["type"] == "image_url":
image_url = element["image_url"]["url"]
images.append(image_url)
content = [prompt] + images
return content
# Function call template
def function_call_prompt(messages: list, functions: list):
function_prompt = "Produce JSON OUTPUT ONLY! The following functions are available to you:"
@ -401,6 +442,8 @@ def prompt_factory(model: str, messages: list, custom_llm_provider: Optional[str
elif custom_llm_provider == "together_ai":
prompt_format, chat_template = get_model_info(token=api_key, model=model)
return format_prompt_togetherai(messages=messages, prompt_format=prompt_format, chat_template=chat_template)
elif custom_llm_provider == "gemini":
return gemini_text_image_pt(messages=messages)
try:
if "meta-llama/llama-2" in model and "chat" in model:
return llama_2_chat_pt(messages=messages)

View file

@ -54,6 +54,7 @@ from .llms import (
oobabooga,
openrouter,
palm,
gemini,
vertex_ai,
maritalk)
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
@ -1137,6 +1138,30 @@ def completion(
)
return response
response = model_response
elif custom_llm_provider == "gemini":
gemini_api_key = (
api_key
or get_secret("GEMINI_API_KEY")
or get_secret("PALM_API_KEY") # older palm api key should also work
or litellm.api_key
)
# palm does not support streaming as yet :(
model_response = gemini.completion(
model=model,
messages=messages,
model_response=model_response,
print_verbose=print_verbose,
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
encoding=encoding,
api_key=gemini_api_key,
logging_obj=logging,
acompletion=acompletion,
custom_prompt_dict=custom_prompt_dict
)
response = model_response
elif custom_llm_provider == "vertex_ai":
vertex_ai_project = (litellm.vertex_project
or get_secret("VERTEXAI_PROJECT"))

View file

@ -12,7 +12,7 @@ import pytest
import litellm
from litellm import embedding, completion, completion_cost, Timeout
from litellm import RateLimitError
litellm.num_retries = 3
# litellm.num_retries = 3
litellm.cache = None
litellm.success_callback = []
user_message = "Write a short poem about the sky"
@ -668,7 +668,7 @@ def test_completion_azure_key_completion_arg():
except Exception as e:
os.environ["AZURE_API_KEY"] = old_key
pytest.fail(f"Error occurred: {e}")
test_completion_azure_key_completion_arg()
# test_completion_azure_key_completion_arg()
async def test_re_use_azure_async_client():
@ -745,7 +745,7 @@ def test_completion_azure():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_completion_azure()
# test_completion_azure()
def test_azure_openai_ad_token():
# this tests if the azure ad token is set in the request header
@ -1082,7 +1082,7 @@ def test_completion_together_ai_mixtral():
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_completion_together_ai_mixtral()
# test_completion_together_ai_mixtral()
def test_completion_together_ai_yi_chat():
model_name = "together_ai/zero-one-ai/Yi-34B-Chat"
@ -1623,6 +1623,18 @@ def test_completion_deep_infra_mistral():
pytest.fail(f"Error occurred: {e}")
# test_completion_deep_infra_mistral()
# Gemini tests
def test_completion_gemini():
litellm.set_verbose = True
model_name = "gemini/gemini-pro"
messages = [{"role": "user", "content": "Hey, how's it going?"}]
try:
response = completion(model=model_name, messages=messages)
# Add any assertions here to check the response
print(response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_completion_gemini()
# Palm tests
def test_completion_palm():
litellm.set_verbose = True