diff --git a/litellm/fine_tuning/main.py b/litellm/fine_tuning/main.py new file mode 100644 index 000000000..6fa2bd9fb --- /dev/null +++ b/litellm/fine_tuning/main.py @@ -0,0 +1,182 @@ +""" +Main File for Fine Tuning API implementation + +https://platform.openai.com/docs/api-reference/fine-tuning + +- fine_tuning.jobs.create() +- fine_tuning.jobs.list() +- client.fine_tuning.jobs.list_events() +""" + +import asyncio +import contextvars +import os +from functools import partial +from typing import Any, Coroutine, Dict, Literal, Optional, Union + +import httpx + +import litellm +from litellm.llms.openai_fine_tuning.openai import ( + FineTuningJob, + FineTuningJobCreate, + OpenAIFineTuningAPI, +) +from litellm.types.llms.openai import Hyperparameters +from litellm.types.router import * +from litellm.utils import supports_httpx_timeout + +####### ENVIRONMENT VARIABLES ################### +openai_fine_tuning_instance = OpenAIFineTuningAPI() +################################################# + + +async def acreate_fine_tuning_job( + model: str, + training_file: str, + hyperparameters: Optional[Hyperparameters] = None, + suffix: Optional[str] = None, + validation_file: Optional[str] = None, + integrations: Optional[List[str]] = None, + seed: Optional[int] = None, + custom_llm_provider: Literal["openai"] = "openai", + extra_headers: Optional[Dict[str, str]] = None, + extra_body: Optional[Dict[str, str]] = None, + **kwargs, +) -> FineTuningJob: + """ + Async: Creates and executes a batch from an uploaded file of request + + LiteLLM Equivalent of POST: https://api.openai.com/v1/batches + """ + try: + loop = asyncio.get_event_loop() + kwargs["acreate_fine_tuning_job"] = True + + # Use a partial function to pass your keyword arguments + func = partial( + create_fine_tuning_job, + model, + training_file, + hyperparameters, + suffix, + validation_file, + integrations, + seed, + custom_llm_provider, + extra_headers, + extra_body, + **kwargs, + ) + + # Add the context to the function + ctx = contextvars.copy_context() + func_with_context = partial(ctx.run, func) + init_response = await loop.run_in_executor(None, func_with_context) + if asyncio.iscoroutine(init_response): + response = await init_response + else: + response = init_response # type: ignore + return response + except Exception as e: + raise e + + +def create_fine_tuning_job( + model: str, + training_file: str, + hyperparameters: Optional[Hyperparameters] = None, + suffix: Optional[str] = None, + validation_file: Optional[str] = None, + integrations: Optional[List[str]] = None, + seed: Optional[int] = None, + custom_llm_provider: Literal["openai"] = "openai", + extra_headers: Optional[Dict[str, str]] = None, + extra_body: Optional[Dict[str, str]] = None, + **kwargs, +) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]: + """ + Creates a fine-tuning job which begins the process of creating a new model from a given dataset. + + Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete + + """ + try: + optional_params = GenericLiteLLMParams(**kwargs) + if custom_llm_provider == "openai": + + # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there + api_base = ( + optional_params.api_base + or litellm.api_base + or os.getenv("OPENAI_API_BASE") + or "https://api.openai.com/v1" + ) + organization = ( + optional_params.organization + or litellm.organization + or os.getenv("OPENAI_ORGANIZATION", None) + or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 + ) + # set API KEY + api_key = ( + optional_params.api_key + or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there + or litellm.openai_key + or os.getenv("OPENAI_API_KEY") + ) + ### TIMEOUT LOGIC ### + timeout = ( + optional_params.timeout or kwargs.get("request_timeout", 600) or 600 + ) + # set timeout for 10 minutes by default + + if ( + timeout is not None + and isinstance(timeout, httpx.Timeout) + and supports_httpx_timeout(custom_llm_provider) == False + ): + read_timeout = timeout.read or 600 + timeout = read_timeout # default 10 min timeout + elif timeout is not None and not isinstance(timeout, httpx.Timeout): + timeout = float(timeout) # type: ignore + elif timeout is None: + timeout = 600.0 + + _is_async = kwargs.pop("acreate_fine_tuning_job", False) is True + + create_fine_tuning_job_data = FineTuningJobCreate( + model=model, + training_file=training_file, + hyperparameters=hyperparameters, + suffix=suffix, + validation_file=validation_file, + integrations=integrations, + seed=seed, + ) + + response = openai_fine_tuning_instance.create_fine_tuning_job( + api_base=api_base, + api_key=api_key, + organization=organization, + create_fine_tuning_job_data=create_fine_tuning_job_data, + timeout=timeout, + max_retries=optional_params.max_retries, + _is_async=_is_async, + ) + else: + raise litellm.exceptions.BadRequestError( + message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format( + custom_llm_provider + ), + model="n/a", + llm_provider=custom_llm_provider, + response=httpx.Response( + status_code=400, + content="Unsupported provider", + request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore + ), + ) + return response + except Exception as e: + raise e