feat(proxy_server.py): add new images/generation endpoint

This commit is contained in:
Krrish Dholakia 2023-12-21 15:39:09 +05:30
parent 8101ad6801
commit 14115d0d60
4 changed files with 112 additions and 8 deletions

View file

@ -1127,6 +1127,72 @@ async def embeddings(request: Request, user_api_key_dict: UserAPIKeyAuth = Depen
detail=error_msg
)
@router.post("/v1/images/generations", dependencies=[Depends(user_api_key_auth)], response_class=ORJSONResponse, tags=["image generation"])
@router.post("/images/generations", dependencies=[Depends(user_api_key_auth)], response_class=ORJSONResponse, tags=["image generation"])
async def image_generation(request: Request, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), background_tasks: BackgroundTasks = BackgroundTasks()):
global proxy_logging_obj
try:
# Use orjson to parse JSON data, orjson speeds up requests significantly
body = await request.body()
data = orjson.loads(body)
# Include original request and headers in the data
data["proxy_server_request"] = {
"url": str(request.url),
"method": request.method,
"headers": dict(request.headers),
"body": copy.copy(data) # use copy instead of deepcopy
}
if data.get("user", None) is None and user_api_key_dict.user_id is not None:
data["user"] = user_api_key_dict.user_id
data["model"] = (
general_settings.get("image_generation_model", None) # server default
or user_model # model name passed via cli args
or data["model"] # default passed in http request
)
if user_model:
data["model"] = user_model
if "metadata" in data:
data["metadata"]["user_api_key"] = user_api_key_dict.api_key
data["metadata"]["headers"] = dict(request.headers)
else:
data["metadata"] = {"user_api_key": user_api_key_dict.api_key}
data["metadata"]["headers"] = dict(request.headers)
router_model_names = [m["model_name"] for m in llm_model_list] if llm_model_list is not None else []
### CALL HOOKS ### - modify incoming data / reject request before calling the model
data = await proxy_logging_obj.pre_call_hook(user_api_key_dict=user_api_key_dict, data=data, call_type="embeddings")
## ROUTE TO CORRECT ENDPOINT ##
if llm_router is not None and data["model"] in router_model_names: # model in router model list
response = await llm_router.aimage_generation(**data)
elif llm_router is not None and data["model"] in llm_router.deployment_names: # model in router deployments, calling a specific deployment on the router
response = await llm_router.aimage_generation(**data, specific_deployment = True)
elif llm_router is not None and llm_router.model_group_alias is not None and data["model"] in llm_router.model_group_alias: # model set in model_group_alias
response = await llm_router.aimage_generation(**data) # ensure this goes the llm_router, router will do the correct alias mapping
else:
response = await litellm.aimage_generation(**data)
background_tasks.add_task(log_input_output, request, response) # background task for logging to OTEL
return response
except Exception as e:
await proxy_logging_obj.post_call_failure_hook(user_api_key_dict=user_api_key_dict, original_exception=e)
traceback.print_exc()
if isinstance(e, HTTPException):
raise e
else:
error_traceback = traceback.format_exc()
error_msg = f"{str(e)}\n\n{error_traceback}"
try:
status = e.status_code # type: ignore
except:
status = 500
raise HTTPException(
status_code=status,
detail=error_msg
)
#### KEY MANAGEMENT ####
@router.post("/key/generate", tags=["key management"], dependencies=[Depends(user_api_key_auth)], response_model=GenerateKeyResponse)

View file

@ -78,4 +78,19 @@ model_list:
model: "bedrock/amazon.titan-embed-text-v1"
- model_name: "GPT-J 6B - Sagemaker Text Embedding (Internal)"
litellm_params:
model: "sagemaker/berri-benchmarking-gpt-j-6b-fp16"
model: "sagemaker/berri-benchmarking-gpt-j-6b-fp16"
- model_name: dall-e-3
litellm_params:
model: dall-e-3
- model_name: dall-e-3
litellm_params:
model: "azure/dall-e-3-test"
api_version: "2023-12-01-preview"
api_base: "os.environ/AZURE_SWEDEN_API_BASE"
api_key: "os.environ/AZURE_SWEDEN_API_KEY"
- model_name: dall-e-2
litellm_params:
model: "azure/"
api_version: "2023-06-01-preview"
api_base: "os.environ/AZURE_API_BASE"
api_key: "os.environ/AZURE_API_KEY"

View file

@ -101,7 +101,7 @@ def test_chat_completion_azure(client_no_auth):
# Run the test
# test_chat_completion_azure()
### EMBEDDING
def test_embedding(client_no_auth):
global headers
from litellm.proxy.proxy_server import user_custom_auth
@ -161,7 +161,30 @@ def test_sagemaker_embedding(client_no_auth):
# Run the test
# test_embedding()
#### IMAGE GENERATION
def test_img_gen(client_no_auth):
global headers
from litellm.proxy.proxy_server import user_custom_auth
try:
test_data = {
"model": "dall-e-3",
"prompt": "A cute baby sea otter",
"n": 1,
"size": "1024x1024"
}
response = client_no_auth.post("/v1/images/generations", json=test_data)
assert response.status_code == 200
result = response.json()
print(len(result["data"][0]["url"]))
assert len(result["data"][0]["url"]) > 10
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception - {str(e)}")
#### ADDITIONAL
# @pytest.mark.skip(reason="hitting yaml load issues on circle-ci")
def test_add_new_model(client_no_auth):
global headers

View file

@ -455,12 +455,12 @@ async def test_aimg_gen_on_router():
}
]
router = Router(model_list=model_list)
# response = await router.aimage_generation(
# model="dall-e-3",
# prompt="A cute baby sea otter"
# )
# print(response)
# assert len(response.data) > 0
response = await router.aimage_generation(
model="dall-e-3",
prompt="A cute baby sea otter"
)
print(response)
assert len(response.data) > 0
response = await router.aimage_generation(
model="dall-e-2",