forked from phoenix/litellm-mirror
feat(llm_guard.py): support llm guard for content moderation
https://github.com/BerriAI/litellm/issues/2056
This commit is contained in:
parent
05d8d550f8
commit
14513af2e2
3 changed files with 227 additions and 0 deletions
122
enterprise/enterprise_hooks/llm_guard.py
Normal file
122
enterprise/enterprise_hooks/llm_guard.py
Normal file
|
@ -0,0 +1,122 @@
|
||||||
|
# +------------------------+
|
||||||
|
#
|
||||||
|
# LLM Guard
|
||||||
|
# https://llm-guard.com/
|
||||||
|
#
|
||||||
|
# +------------------------+
|
||||||
|
# Thank you users! We ❤️ you! - Krrish & Ishaan
|
||||||
|
## This provides an LLM Guard Integration for content moderation on the proxy
|
||||||
|
|
||||||
|
from typing import Optional, Literal, Union
|
||||||
|
import litellm, traceback, sys, uuid, os
|
||||||
|
from litellm.caching import DualCache
|
||||||
|
from litellm.proxy._types import UserAPIKeyAuth
|
||||||
|
from litellm.integrations.custom_logger import CustomLogger
|
||||||
|
from fastapi import HTTPException
|
||||||
|
from litellm._logging import verbose_proxy_logger
|
||||||
|
from litellm.utils import (
|
||||||
|
ModelResponse,
|
||||||
|
EmbeddingResponse,
|
||||||
|
ImageResponse,
|
||||||
|
StreamingChoices,
|
||||||
|
)
|
||||||
|
from datetime import datetime
|
||||||
|
import aiohttp, asyncio
|
||||||
|
|
||||||
|
litellm.set_verbose = True
|
||||||
|
|
||||||
|
|
||||||
|
class _ENTERPRISE_LLMGuard(CustomLogger):
|
||||||
|
# Class variables or attributes
|
||||||
|
def __init__(
|
||||||
|
self, mock_testing: bool = False, mock_redacted_text: Optional[dict] = None
|
||||||
|
):
|
||||||
|
self.mock_redacted_text = mock_redacted_text
|
||||||
|
if mock_testing == True: # for testing purposes only
|
||||||
|
return
|
||||||
|
self.llm_guard_api_base = litellm.get_secret("LLM_GUARD_API_BASE", None)
|
||||||
|
if self.llm_guard_api_base is None:
|
||||||
|
raise Exception("Missing `LLM_GUARD_API_BASE` from environment")
|
||||||
|
elif not self.llm_guard_api_base.endswith("/"):
|
||||||
|
self.llm_guard_api_base += "/"
|
||||||
|
|
||||||
|
def print_verbose(self, print_statement):
|
||||||
|
try:
|
||||||
|
verbose_proxy_logger.debug(print_statement)
|
||||||
|
if litellm.set_verbose:
|
||||||
|
print(print_statement) # noqa
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def moderation_check(self, text: str):
|
||||||
|
"""
|
||||||
|
[TODO] make this more performant for high-throughput scenario
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
async with aiohttp.ClientSession() as session:
|
||||||
|
if self.mock_redacted_text is not None:
|
||||||
|
redacted_text = self.mock_redacted_text
|
||||||
|
else:
|
||||||
|
# Make the first request to /analyze
|
||||||
|
analyze_url = f"{self.llm_guard_api_base}analyze/prompt"
|
||||||
|
verbose_proxy_logger.debug(f"Making request to: {analyze_url}")
|
||||||
|
analyze_payload = {"prompt": text}
|
||||||
|
redacted_text = None
|
||||||
|
async with session.post(
|
||||||
|
analyze_url, json=analyze_payload
|
||||||
|
) as response:
|
||||||
|
redacted_text = await response.json()
|
||||||
|
|
||||||
|
if redacted_text is not None:
|
||||||
|
if (
|
||||||
|
redacted_text.get("is_valid", None) is not None
|
||||||
|
and redacted_text["is_valid"] == "True"
|
||||||
|
):
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=400,
|
||||||
|
detail={"error": "Violated content safety policy"},
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=500,
|
||||||
|
detail={
|
||||||
|
"error": f"Invalid content moderation response: {redacted_text}"
|
||||||
|
},
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
traceback.print_exc()
|
||||||
|
raise e
|
||||||
|
|
||||||
|
async def async_moderation_hook(
|
||||||
|
self,
|
||||||
|
data: dict,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
- Calls the LLM Guard Endpoint
|
||||||
|
- Rejects request if it fails safety check
|
||||||
|
- Use the sanitized prompt returned
|
||||||
|
- LLM Guard can handle things like PII Masking, etc.
|
||||||
|
"""
|
||||||
|
if "messages" in data:
|
||||||
|
safety_check_messages = data["messages"][
|
||||||
|
-1
|
||||||
|
] # get the last response - llama guard has a 4k token limit
|
||||||
|
if (
|
||||||
|
isinstance(safety_check_messages, dict)
|
||||||
|
and "content" in safety_check_messages
|
||||||
|
and isinstance(safety_check_messages["content"], str)
|
||||||
|
):
|
||||||
|
await self.moderation_check(safety_check_messages["content"])
|
||||||
|
|
||||||
|
return data
|
||||||
|
|
||||||
|
|
||||||
|
# llm_guard = _ENTERPRISE_LLMGuard()
|
||||||
|
|
||||||
|
# asyncio.run(
|
||||||
|
# llm_guard.async_moderation_hook(
|
||||||
|
# data={"messages": [{"role": "user", "content": "Hey how's it going?"}]}
|
||||||
|
# )
|
||||||
|
# )
|
|
@ -1467,6 +1467,16 @@ class ProxyConfig:
|
||||||
_ENTERPRISE_GoogleTextModeration()
|
_ENTERPRISE_GoogleTextModeration()
|
||||||
)
|
)
|
||||||
imported_list.append(google_text_moderation_obj)
|
imported_list.append(google_text_moderation_obj)
|
||||||
|
elif (
|
||||||
|
isinstance(callback, str)
|
||||||
|
and callback == "llmguard_moderations"
|
||||||
|
):
|
||||||
|
from litellm.proxy.enterprise.enterprise_hooks.llm_guard import (
|
||||||
|
_ENTERPRISE_LLMGuard,
|
||||||
|
)
|
||||||
|
|
||||||
|
llm_guard_moderation_obj = _ENTERPRISE_LLMGuard()
|
||||||
|
imported_list.append(llm_guard_moderation_obj)
|
||||||
else:
|
else:
|
||||||
imported_list.append(
|
imported_list.append(
|
||||||
get_instance_fn(
|
get_instance_fn(
|
||||||
|
|
95
litellm/tests/test_llm_guard.py
Normal file
95
litellm/tests/test_llm_guard.py
Normal file
|
@ -0,0 +1,95 @@
|
||||||
|
# What is this?
|
||||||
|
## This tests the llm guard integration
|
||||||
|
|
||||||
|
# What is this?
|
||||||
|
## Unit test for presidio pii masking
|
||||||
|
import sys, os, asyncio, time, random
|
||||||
|
from datetime import datetime
|
||||||
|
import traceback
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
import os
|
||||||
|
|
||||||
|
sys.path.insert(
|
||||||
|
0, os.path.abspath("../..")
|
||||||
|
) # Adds the parent directory to the system path
|
||||||
|
import pytest
|
||||||
|
import litellm
|
||||||
|
from litellm.proxy.enterprise.enterprise_hooks.llm_guard import _ENTERPRISE_LLMGuard
|
||||||
|
from litellm import Router, mock_completion
|
||||||
|
from litellm.proxy.utils import ProxyLogging
|
||||||
|
from litellm.proxy._types import UserAPIKeyAuth
|
||||||
|
from litellm.caching import DualCache
|
||||||
|
|
||||||
|
### UNIT TESTS FOR LLM GUARD ###
|
||||||
|
|
||||||
|
|
||||||
|
# Test if PII masking works with input A
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_llm_guard_valid_response():
|
||||||
|
"""
|
||||||
|
Tests to see llm guard raises an error for a flagged response
|
||||||
|
"""
|
||||||
|
input_a_anonymizer_results = {
|
||||||
|
"sanitized_prompt": "hello world",
|
||||||
|
"is_valid": True,
|
||||||
|
"scanners": {"Regex": 0.0},
|
||||||
|
}
|
||||||
|
llm_guard = _ENTERPRISE_LLMGuard(
|
||||||
|
mock_testing=True, mock_redacted_text=input_a_anonymizer_results
|
||||||
|
)
|
||||||
|
|
||||||
|
_api_key = "sk-12345"
|
||||||
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key)
|
||||||
|
local_cache = DualCache()
|
||||||
|
|
||||||
|
try:
|
||||||
|
await llm_guard.async_moderation_hook(
|
||||||
|
data={
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "hello world, my name is Jane Doe. My number is: 23r323r23r2wwkl",
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
pytest.fail(f"An exception occurred - {str(e)}")
|
||||||
|
|
||||||
|
|
||||||
|
# Test if PII masking works with input B (also test if the response != A's response)
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_llm_guard_error_raising():
|
||||||
|
"""
|
||||||
|
Tests to see llm guard raises an error for a flagged response
|
||||||
|
"""
|
||||||
|
|
||||||
|
input_b_anonymizer_results = {
|
||||||
|
"sanitized_prompt": "hello world",
|
||||||
|
"is_valid": False,
|
||||||
|
"scanners": {"Regex": 0.0},
|
||||||
|
}
|
||||||
|
llm_guard = _ENTERPRISE_LLMGuard(
|
||||||
|
mock_testing=True, mock_redacted_text=input_b_anonymizer_results
|
||||||
|
)
|
||||||
|
|
||||||
|
_api_key = "sk-12345"
|
||||||
|
user_api_key_dict = UserAPIKeyAuth(api_key=_api_key)
|
||||||
|
local_cache = DualCache()
|
||||||
|
|
||||||
|
try:
|
||||||
|
await llm_guard.async_moderation_hook(
|
||||||
|
data={
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "hello world, my name is Jane Doe. My number is: 23r323r23r2wwkl",
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
|
)
|
||||||
|
pytest.fail(f"Should have failed - {str(e)}")
|
||||||
|
except Exception as e:
|
||||||
|
pass
|
Loading…
Add table
Add a link
Reference in a new issue