test(caching_unit_tests.py): add unit tests for llm caching

ensures coverage for common caching scenarios across different implementations
This commit is contained in:
Krrish Dholakia 2024-11-12 13:21:22 +05:30
parent 0bc9864c09
commit 16bbed72d4
5 changed files with 244 additions and 188 deletions

View file

@ -1103,193 +1103,6 @@ async def test_redis_cache_acompletion_stream_bedrock():
raise e
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_disk_cache_completion(sync_mode):
litellm._turn_on_debug()
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding / reading from cache
messages = [
{"role": "user", "content": f"write a one sentence poem about: {random_number}"}
]
litellm.cache = Cache(
type="disk",
)
if sync_mode:
response1 = completion(
"gpt-3.5-turbo",
messages=messages,
caching=True,
max_tokens=20,
mock_response="This number is so great!",
)
else:
response1 = await litellm.acompletion(
"gpt-3.5-turbo",
messages=messages,
caching=True,
max_tokens=20,
mock_response="This number is so great!",
)
# response2 is mocked to a different response from response1,
# but the completion from the cache should be used instead of the mock
# response since the input is the same as response1
await asyncio.sleep(0.5)
if sync_mode:
response2 = completion(
"gpt-3.5-turbo",
messages=messages,
caching=True,
max_tokens=20,
mock_response="This number is great!",
)
else:
response2 = await litellm.acompletion(
"gpt-3.5-turbo",
messages=messages,
caching=True,
max_tokens=20,
mock_response="This number is great!",
)
if (
response1["choices"][0]["message"]["content"]
!= response2["choices"][0]["message"]["content"]
): # 1 and 2 should be the same
# 1&2 have the exact same input params. This MUST Be a CACHE HIT
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(
f"Error occurred: response1 - {response1['choices'][0]['message']['content']} != response2 - {response2['choices'][0]['message']['content']}"
)
# Since the parameters are not the same as response1, response3 should actually
# be the mock response
if sync_mode:
response3 = completion(
"gpt-3.5-turbo",
messages=messages,
caching=True,
temperature=0.5,
mock_response="This number is awful!",
)
else:
response3 = await litellm.acompletion(
"gpt-3.5-turbo",
messages=messages,
caching=True,
temperature=0.5,
mock_response="This number is awful!",
)
print("\nresponse 1", response1)
print("\nresponse 2", response2)
print("\nresponse 3", response3)
# print("\nresponse 4", response4)
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
# 1 & 2 should be exactly the same
# 1 & 3 should be different, since input params are diff
if (
response1["choices"][0]["message"]["content"]
== response3["choices"][0]["message"]["content"]
):
# if input params like max_tokens, temperature are diff it should NOT be a cache hit
print(f"response1: {response1}")
print(f"response3: {response3}")
pytest.fail(
f"Response 1 == response 3. Same model, diff params shoudl not cache Error"
f" occurred:"
)
assert response1.id == response2.id
assert response1.created == response2.created
assert response1.choices[0].message.content == response2.choices[0].message.content
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_disk_cache_embedding(sync_mode):
litellm._turn_on_debug()
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding / reading from cache
input = [f"hello {random_number}"]
litellm.cache = Cache(
type="disk",
)
if sync_mode:
response1 = embedding(
"openai/text-embedding-ada-002",
input=input,
caching=True,
)
else:
response1 = await litellm.aembedding(
"openai/text-embedding-ada-002",
input=input,
caching=True,
)
# response2 is mocked to a different response from response1,
# but the completion from the cache should be used instead of the mock
# response since the input is the same as response1
await asyncio.sleep(0.5)
if sync_mode:
response2 = embedding(
"openai/text-embedding-ada-002",
input=input,
caching=True,
)
else:
response2 = await litellm.aembedding(
"openai/text-embedding-ada-002",
input=input,
caching=True,
)
if response2._hidden_params["cache_hit"] is not True:
pytest.fail("Cache hit should be True")
assert response1.id == response2.id
# Since the parameters are not the same as response1, response3 should actually
# be the mock response
if sync_mode:
response3 = embedding(
"openai/text-embedding-ada-002",
input=input,
user="charlie",
caching=True,
)
else:
response3 = await litellm.acompletion(
"openai/text-embedding-ada-002",
input=input,
caching=True,
user="charlie",
)
print("\nresponse 1", response1)
print("\nresponse 2", response2)
print("\nresponse 3", response3)
# print("\nresponse 4", response4)
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
# 1 & 2 should be exactly the same
# 1 & 3 should be different, since input params are diff
if response3._hidden_params["cache_hit"] is True:
pytest.fail("Cache hit should not be True")
assert response1.id != response3.id
# @pytest.mark.skip(reason="AWS Suspended Account")
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio