forked from phoenix/litellm-mirror
Merge pull request #5449 from BerriAI/litellm_Fix_vertex_multimodal
[Fix-Proxy] Allow running /health checks on vertex multimodal embedding requests
This commit is contained in:
commit
1bd2b2fc92
4 changed files with 278 additions and 164 deletions
|
@ -41,15 +41,12 @@ from litellm.types.llms.vertex_ai import (
|
|||
FunctionDeclaration,
|
||||
GenerateContentResponseBody,
|
||||
GenerationConfig,
|
||||
Instance,
|
||||
InstanceVideo,
|
||||
PartType,
|
||||
RequestBody,
|
||||
SafetSettingsConfig,
|
||||
SystemInstructions,
|
||||
ToolConfig,
|
||||
Tools,
|
||||
VertexMultimodalEmbeddingRequest,
|
||||
)
|
||||
from litellm.types.utils import GenericStreamingChunk
|
||||
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
|
||||
|
@ -811,10 +808,6 @@ class VertexLLM(BaseLLM):
|
|||
self._credentials: Optional[Any] = None
|
||||
self.project_id: Optional[str] = None
|
||||
self.async_handler: Optional[AsyncHTTPHandler] = None
|
||||
self.SUPPORTED_MULTIMODAL_EMBEDDING_MODELS = [
|
||||
"multimodalembedding",
|
||||
"multimodalembedding@001",
|
||||
]
|
||||
|
||||
def _process_response(
|
||||
self,
|
||||
|
@ -1737,161 +1730,6 @@ class VertexLLM(BaseLLM):
|
|||
|
||||
return model_response
|
||||
|
||||
def multimodal_embedding(
|
||||
self,
|
||||
model: str,
|
||||
input: Union[list, str],
|
||||
print_verbose,
|
||||
model_response: litellm.EmbeddingResponse,
|
||||
custom_llm_provider: Literal["gemini", "vertex_ai"],
|
||||
optional_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
logging_obj=None,
|
||||
encoding=None,
|
||||
vertex_project=None,
|
||||
vertex_location=None,
|
||||
vertex_credentials=None,
|
||||
aembedding=False,
|
||||
timeout=300,
|
||||
client=None,
|
||||
):
|
||||
auth_header, url = self._get_token_and_url(
|
||||
model=model,
|
||||
gemini_api_key=api_key,
|
||||
vertex_project=vertex_project,
|
||||
vertex_location=vertex_location,
|
||||
vertex_credentials=vertex_credentials,
|
||||
stream=None,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
api_base=api_base,
|
||||
should_use_v1beta1_features=False,
|
||||
mode="embedding",
|
||||
)
|
||||
|
||||
if client is None:
|
||||
_params = {}
|
||||
if timeout is not None:
|
||||
if isinstance(timeout, float) or isinstance(timeout, int):
|
||||
_httpx_timeout = httpx.Timeout(timeout)
|
||||
_params["timeout"] = _httpx_timeout
|
||||
else:
|
||||
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
|
||||
|
||||
sync_handler: HTTPHandler = HTTPHandler(**_params) # type: ignore
|
||||
else:
|
||||
sync_handler = client # type: ignore
|
||||
|
||||
optional_params = optional_params or {}
|
||||
|
||||
request_data = VertexMultimodalEmbeddingRequest()
|
||||
|
||||
if "instances" in optional_params:
|
||||
request_data["instances"] = optional_params["instances"]
|
||||
elif isinstance(input, list):
|
||||
request_data["instances"] = input
|
||||
else:
|
||||
# construct instances
|
||||
vertex_request_instance = Instance(**optional_params)
|
||||
|
||||
if isinstance(input, str):
|
||||
vertex_request_instance["text"] = input
|
||||
|
||||
request_data["instances"] = [vertex_request_instance]
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json; charset=utf-8",
|
||||
"Authorization": f"Bearer {auth_header}",
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=input,
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": request_data,
|
||||
"api_base": url,
|
||||
"headers": headers,
|
||||
},
|
||||
)
|
||||
|
||||
if aembedding is True:
|
||||
return self.async_multimodal_embedding(
|
||||
model=model,
|
||||
api_base=url,
|
||||
data=request_data,
|
||||
timeout=timeout,
|
||||
headers=headers,
|
||||
client=client,
|
||||
model_response=model_response,
|
||||
)
|
||||
|
||||
response = sync_handler.post(
|
||||
url=url,
|
||||
headers=headers,
|
||||
data=json.dumps(request_data),
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise Exception(f"Error: {response.status_code} {response.text}")
|
||||
|
||||
_json_response = response.json()
|
||||
if "predictions" not in _json_response:
|
||||
raise litellm.InternalServerError(
|
||||
message=f"embedding response does not contain 'predictions', got {_json_response}",
|
||||
llm_provider="vertex_ai",
|
||||
model=model,
|
||||
)
|
||||
_predictions = _json_response["predictions"]
|
||||
|
||||
model_response.data = _predictions
|
||||
model_response.model = model
|
||||
|
||||
return model_response
|
||||
|
||||
async def async_multimodal_embedding(
|
||||
self,
|
||||
model: str,
|
||||
api_base: str,
|
||||
data: VertexMultimodalEmbeddingRequest,
|
||||
model_response: litellm.EmbeddingResponse,
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
headers={},
|
||||
client: Optional[AsyncHTTPHandler] = None,
|
||||
) -> litellm.EmbeddingResponse:
|
||||
if client is None:
|
||||
_params = {}
|
||||
if timeout is not None:
|
||||
if isinstance(timeout, float) or isinstance(timeout, int):
|
||||
timeout = httpx.Timeout(timeout)
|
||||
_params["timeout"] = timeout
|
||||
client = AsyncHTTPHandler(**_params) # type: ignore
|
||||
else:
|
||||
client = client # type: ignore
|
||||
|
||||
try:
|
||||
response = await client.post(api_base, headers=headers, json=data) # type: ignore
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError as err:
|
||||
error_code = err.response.status_code
|
||||
raise VertexAIError(status_code=error_code, message=err.response.text)
|
||||
except httpx.TimeoutException:
|
||||
raise VertexAIError(status_code=408, message="Timeout error occurred.")
|
||||
|
||||
_json_response = response.json()
|
||||
if "predictions" not in _json_response:
|
||||
raise litellm.InternalServerError(
|
||||
message=f"embedding response does not contain 'predictions', got {_json_response}",
|
||||
llm_provider="vertex_ai",
|
||||
model=model,
|
||||
)
|
||||
_predictions = _json_response["predictions"]
|
||||
|
||||
model_response.data = _predictions
|
||||
model_response.model = model
|
||||
|
||||
return model_response
|
||||
|
||||
|
||||
class ModelResponseIterator:
|
||||
def __init__(self, streaming_response, sync_stream: bool):
|
||||
|
|
|
@ -0,0 +1,216 @@
|
|||
import json
|
||||
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
|
||||
VertexAIError,
|
||||
VertexLLM,
|
||||
)
|
||||
from litellm.types.llms.vertex_ai import (
|
||||
Instance,
|
||||
InstanceVideo,
|
||||
VertexMultimodalEmbeddingRequest,
|
||||
)
|
||||
|
||||
|
||||
class VertexMultimodalEmbedding(VertexLLM):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.SUPPORTED_MULTIMODAL_EMBEDDING_MODELS = [
|
||||
"multimodalembedding",
|
||||
"multimodalembedding@001",
|
||||
]
|
||||
|
||||
def multimodal_embedding(
|
||||
self,
|
||||
model: str,
|
||||
input: Union[list, str],
|
||||
print_verbose,
|
||||
model_response: litellm.EmbeddingResponse,
|
||||
custom_llm_provider: Literal["gemini", "vertex_ai"],
|
||||
optional_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
logging_obj=None,
|
||||
encoding=None,
|
||||
vertex_project=None,
|
||||
vertex_location=None,
|
||||
vertex_credentials=None,
|
||||
aembedding=False,
|
||||
timeout=300,
|
||||
client=None,
|
||||
):
|
||||
auth_header, url = self._get_token_and_url(
|
||||
model=model,
|
||||
gemini_api_key=api_key,
|
||||
vertex_project=vertex_project,
|
||||
vertex_location=vertex_location,
|
||||
vertex_credentials=vertex_credentials,
|
||||
stream=None,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
api_base=api_base,
|
||||
should_use_v1beta1_features=False,
|
||||
mode="embedding",
|
||||
)
|
||||
|
||||
if client is None:
|
||||
_params = {}
|
||||
if timeout is not None:
|
||||
if isinstance(timeout, float) or isinstance(timeout, int):
|
||||
_httpx_timeout = httpx.Timeout(timeout)
|
||||
_params["timeout"] = _httpx_timeout
|
||||
else:
|
||||
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
|
||||
|
||||
sync_handler: HTTPHandler = HTTPHandler(**_params) # type: ignore
|
||||
else:
|
||||
sync_handler = client # type: ignore
|
||||
|
||||
optional_params = optional_params or {}
|
||||
|
||||
request_data = VertexMultimodalEmbeddingRequest()
|
||||
|
||||
if "instances" in optional_params:
|
||||
request_data["instances"] = optional_params["instances"]
|
||||
elif isinstance(input, list):
|
||||
vertex_instances: List[Instance] = self.process_openai_embedding_input(
|
||||
_input=input
|
||||
)
|
||||
request_data["instances"] = vertex_instances
|
||||
|
||||
else:
|
||||
# construct instances
|
||||
vertex_request_instance = Instance(**optional_params)
|
||||
|
||||
if isinstance(input, str):
|
||||
vertex_request_instance["text"] = input
|
||||
|
||||
request_data["instances"] = [vertex_request_instance]
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json; charset=utf-8",
|
||||
"Authorization": f"Bearer {auth_header}",
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=input,
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": request_data,
|
||||
"api_base": url,
|
||||
"headers": headers,
|
||||
},
|
||||
)
|
||||
|
||||
if aembedding is True:
|
||||
return self.async_multimodal_embedding(
|
||||
model=model,
|
||||
api_base=url,
|
||||
data=request_data,
|
||||
timeout=timeout,
|
||||
headers=headers,
|
||||
client=client,
|
||||
model_response=model_response,
|
||||
)
|
||||
|
||||
response = sync_handler.post(
|
||||
url=url,
|
||||
headers=headers,
|
||||
data=json.dumps(request_data),
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise Exception(f"Error: {response.status_code} {response.text}")
|
||||
|
||||
_json_response = response.json()
|
||||
if "predictions" not in _json_response:
|
||||
raise litellm.InternalServerError(
|
||||
message=f"embedding response does not contain 'predictions', got {_json_response}",
|
||||
llm_provider="vertex_ai",
|
||||
model=model,
|
||||
)
|
||||
_predictions = _json_response["predictions"]
|
||||
|
||||
model_response.data = _predictions
|
||||
model_response.model = model
|
||||
|
||||
return model_response
|
||||
|
||||
async def async_multimodal_embedding(
|
||||
self,
|
||||
model: str,
|
||||
api_base: str,
|
||||
data: VertexMultimodalEmbeddingRequest,
|
||||
model_response: litellm.EmbeddingResponse,
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
headers={},
|
||||
client: Optional[AsyncHTTPHandler] = None,
|
||||
) -> litellm.EmbeddingResponse:
|
||||
if client is None:
|
||||
_params = {}
|
||||
if timeout is not None:
|
||||
if isinstance(timeout, float) or isinstance(timeout, int):
|
||||
timeout = httpx.Timeout(timeout)
|
||||
_params["timeout"] = timeout
|
||||
client = AsyncHTTPHandler(**_params) # type: ignore
|
||||
else:
|
||||
client = client # type: ignore
|
||||
|
||||
try:
|
||||
response = await client.post(api_base, headers=headers, json=data) # type: ignore
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError as err:
|
||||
error_code = err.response.status_code
|
||||
raise VertexAIError(status_code=error_code, message=err.response.text)
|
||||
except httpx.TimeoutException:
|
||||
raise VertexAIError(status_code=408, message="Timeout error occurred.")
|
||||
|
||||
_json_response = response.json()
|
||||
if "predictions" not in _json_response:
|
||||
raise litellm.InternalServerError(
|
||||
message=f"embedding response does not contain 'predictions', got {_json_response}",
|
||||
llm_provider="vertex_ai",
|
||||
model=model,
|
||||
)
|
||||
_predictions = _json_response["predictions"]
|
||||
|
||||
model_response.data = _predictions
|
||||
model_response.model = model
|
||||
|
||||
return model_response
|
||||
|
||||
def process_openai_embedding_input(
|
||||
self, _input: Union[list, str]
|
||||
) -> List[Instance]:
|
||||
"""
|
||||
Process the input for multimodal embedding requests.
|
||||
|
||||
Args:
|
||||
_input (Union[list, str]): The input data to process.
|
||||
|
||||
Returns:
|
||||
List[Instance]: A list of processed VertexAI Instance objects.
|
||||
"""
|
||||
|
||||
_input_list = None
|
||||
if not isinstance(_input, list):
|
||||
_input_list = [_input]
|
||||
else:
|
||||
_input_list = _input
|
||||
|
||||
processed_instances = []
|
||||
for element in _input:
|
||||
if not isinstance(element, dict):
|
||||
# assuming that input is a list of strings
|
||||
# example: input = ["hello from litellm"]
|
||||
instance = Instance(text=element)
|
||||
else:
|
||||
# assume this is a
|
||||
instance = Instance(**element)
|
||||
processed_instances.append(instance)
|
||||
|
||||
return processed_instances
|
|
@ -132,6 +132,9 @@ from .llms.vertex_ai_and_google_ai_studio.embeddings.batch_embed_content_handler
|
|||
from .llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
|
||||
VertexLLM,
|
||||
)
|
||||
from .llms.vertex_ai_and_google_ai_studio.multimodal_embeddings.embedding_handler import (
|
||||
VertexMultimodalEmbedding,
|
||||
)
|
||||
from .llms.vertex_ai_and_google_ai_studio.vertex_ai_partner_models.main import (
|
||||
VertexAIPartnerModels,
|
||||
)
|
||||
|
@ -175,6 +178,7 @@ triton_chat_completions = TritonChatCompletion()
|
|||
bedrock_chat_completion = BedrockLLM()
|
||||
bedrock_converse_chat_completion = BedrockConverseLLM()
|
||||
vertex_chat_completion = VertexLLM()
|
||||
vertex_multimodal_embedding = VertexMultimodalEmbedding()
|
||||
google_batch_embeddings = GoogleBatchEmbeddings()
|
||||
vertex_partner_models_chat_completion = VertexAIPartnerModels()
|
||||
vertex_text_to_speech = VertexTextToSpeechAPI()
|
||||
|
@ -3583,10 +3587,11 @@ def embedding(
|
|||
if (
|
||||
"image" in optional_params
|
||||
or "video" in optional_params
|
||||
or model in vertex_chat_completion.SUPPORTED_MULTIMODAL_EMBEDDING_MODELS
|
||||
or model
|
||||
in vertex_multimodal_embedding.SUPPORTED_MULTIMODAL_EMBEDDING_MODELS
|
||||
):
|
||||
# multimodal embedding is supported on vertex httpx
|
||||
response = vertex_chat_completion.multimodal_embedding(
|
||||
response = vertex_multimodal_embedding.multimodal_embedding(
|
||||
model=model,
|
||||
input=input,
|
||||
encoding=encoding,
|
||||
|
|
|
@ -1934,6 +1934,61 @@ async def test_vertexai_multimodal_embedding():
|
|||
print("Response:", response)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_vertexai_multimodal_embedding_text_input():
|
||||
load_vertex_ai_credentials()
|
||||
mock_response = AsyncMock()
|
||||
|
||||
def return_val():
|
||||
return {
|
||||
"predictions": [
|
||||
{
|
||||
"textEmbedding": [0.4, 0.5, 0.6], # Simplified example
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
mock_response.json = return_val
|
||||
mock_response.status_code = 200
|
||||
|
||||
expected_payload = {
|
||||
"instances": [
|
||||
{
|
||||
"text": "this is a unicorn",
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
with patch(
|
||||
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
||||
return_value=mock_response,
|
||||
) as mock_post:
|
||||
# Act: Call the litellm.aembedding function
|
||||
response = await litellm.aembedding(
|
||||
model="vertex_ai/multimodalembedding@001",
|
||||
input=[
|
||||
"this is a unicorn",
|
||||
],
|
||||
)
|
||||
|
||||
# Assert
|
||||
mock_post.assert_called_once()
|
||||
_, kwargs = mock_post.call_args
|
||||
args_to_vertexai = kwargs["json"]
|
||||
|
||||
print("args to vertex ai call:", args_to_vertexai)
|
||||
|
||||
assert args_to_vertexai == expected_payload
|
||||
assert response.model == "multimodalembedding@001"
|
||||
assert len(response.data) == 1
|
||||
response_data = response.data[0]
|
||||
assert "textEmbedding" in response_data
|
||||
|
||||
# Optional: Print for debugging
|
||||
print("Arguments passed to Vertex AI:", args_to_vertexai)
|
||||
print("Response:", response)
|
||||
|
||||
|
||||
@pytest.mark.skip(
|
||||
reason="new test - works locally running into vertex version issues on ci/cd"
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue