LiteLLM Minor Fixes & Improvements (10/23/2024) (#6407)

* docs(bedrock.md): clarify bedrock auth in litellm docs

* fix(convert_dict_to_response.py): Fixes https://github.com/BerriAI/litellm/issues/6387

* feat(pattern_match_deployments.py): more robust handling for wildcard routes (model_name: custom_route/* -> openai/*)

Enables user to expose custom routes to users with dynamic handling

* test: add more testing

* docs(custom_pricing.md): add debug tutorial for custom pricing

* test: skip codestral test - unreachable backend

* test: fix test

* fix(pattern_matching_deployments.py): fix typing

* test: cleanup codestral tests - backend api unavailable

* (refactor) prometheus async_log_success_event to be under 100 LOC  (#6416)

* unit testig for prometheus

* unit testing for success metrics

* use 1 helper for _increment_token_metrics

* use helper for _increment_remaining_budget_metrics

* use _increment_remaining_budget_metrics

* use _increment_top_level_request_and_spend_metrics

* use helper for _set_latency_metrics

* remove noqa violation

* fix test prometheus

* test prometheus

* unit testing for all prometheus helper functions

* fix prom unit tests

* fix unit tests prometheus

* fix unit test prom

* (refactor) router - use static methods for client init utils  (#6420)

* use InitalizeOpenAISDKClient

* use InitalizeOpenAISDKClient static method

* fix  # noqa: PLR0915

* (code cleanup) remove unused and undocumented logging integrations - litedebugger, berrispend  (#6406)

* code cleanup remove unused and undocumented code files

* fix unused logging integrations cleanup

* bump: version 1.50.3 → 1.50.4

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
This commit is contained in:
Krish Dholakia 2024-10-24 19:01:41 -07:00 committed by GitHub
parent c04c4a82f1
commit 1cd1d23fdf
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 235 additions and 38 deletions

View file

@ -9,12 +9,11 @@ LiteLLM requires `boto3` to be installed on your system for Bedrock requests
pip install boto3>=1.28.57
```
## Required Environment Variables
```python
os.environ["AWS_ACCESS_KEY_ID"] = "" # Access key
os.environ["AWS_SECRET_ACCESS_KEY"] = "" # Secret access key
os.environ["AWS_REGION_NAME"] = "" # us-east-1, us-east-2, us-west-1, us-west-2
```
:::info
LiteLLM uses boto3 to handle authentication. All these options are supported - https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#credentials.
:::
## Usage
@ -22,6 +21,7 @@ os.environ["AWS_REGION_NAME"] = "" # us-east-1, us-east-2, us-west-1, us-west-2
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
```python
import os
from litellm import completion
@ -38,7 +38,7 @@ response = completion(
## LiteLLM Proxy Usage
Here's how to call Anthropic with the LiteLLM Proxy Server
Here's how to call Bedrock with the LiteLLM Proxy Server
### 1. Setup config.yaml

View file

@ -58,3 +58,33 @@ model_list:
input_cost_per_token: 0.000421 # 👈 ONLY to track cost per token
output_cost_per_token: 0.000520 # 👈 ONLY to track cost per token
```
### Debugging
If you're custom pricing is not being used or you're seeing errors, please check the following:
1. Run the proxy with `LITELLM_LOG="DEBUG"` or the `--detailed_debug` cli flag
```bash
litellm --config /path/to/config.yaml --detailed_debug
```
2. Check logs for this line:
```
LiteLLM:DEBUG: utils.py:263 - litellm.acompletion
```
3. Check if 'input_cost_per_token' and 'output_cost_per_token' are top-level keys in the acompletion function.
```bash
acompletion(
...,
input_cost_per_token: my-custom-price,
output_cost_per_token: my-custom-price,
)
```
If these keys are not present, LiteLLM will not use your custom pricing.
If the problem persists, please file an issue on [GitHub](https://github.com/BerriAI/litellm/issues).

View file

@ -214,6 +214,28 @@ def _handle_invalid_parallel_tool_calls(
return tool_calls
class LiteLLMResponseObjectHandler:
@staticmethod
def convert_to_image_response(
response_object: dict,
model_response_object: Optional[ImageResponse] = None,
hidden_params: Optional[dict] = None,
) -> ImageResponse:
response_object.update({"hidden_params": hidden_params})
if model_response_object is None:
model_response_object = ImageResponse(**response_object)
return model_response_object
else:
model_response_dict = model_response_object.model_dump()
model_response_dict.update(response_object)
model_response_object = ImageResponse(**model_response_dict)
return model_response_object
def convert_to_model_response_object( # noqa: PLR0915
response_object: Optional[dict] = None,
model_response_object: Optional[
@ -238,7 +260,6 @@ def convert_to_model_response_object( # noqa: PLR0915
] = None, # used for supporting 'json_schema' on older models
):
received_args = locals()
additional_headers = get_response_headers(_response_headers)
if hidden_params is None:
@ -427,20 +448,11 @@ def convert_to_model_response_object( # noqa: PLR0915
):
if response_object is None:
raise Exception("Error in response object format")
if model_response_object is None:
model_response_object = ImageResponse()
if "created" in response_object:
model_response_object.created = response_object["created"]
if "data" in response_object:
model_response_object.data = response_object["data"]
if hidden_params is not None:
model_response_object._hidden_params = hidden_params
return model_response_object
return LiteLLMResponseObjectHandler.convert_to_image_response(
response_object=response_object,
model_response_object=model_response_object,
hidden_params=hidden_params,
)
elif response_type == "audio_transcription" and (
model_response_object is None
or isinstance(model_response_object, TranscriptionResponse)

View file

@ -1349,7 +1349,7 @@ class OpenAIChatCompletion(BaseLLM):
if aimg_generation is True:
return self.aimage_generation(data=data, prompt=prompt, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries) # type: ignore
openai_client = self._get_openai_client(
openai_client: OpenAI = self._get_openai_client( # type: ignore
is_async=False,
api_key=api_key,
api_base=api_base,
@ -1371,8 +1371,9 @@ class OpenAIChatCompletion(BaseLLM):
)
## COMPLETION CALL
response = openai_client.images.generate(**data, timeout=timeout) # type: ignore
response = response.model_dump() # type: ignore
_response = openai_client.images.generate(**data, timeout=timeout) # type: ignore
response = _response.model_dump()
## LOGGING
logging_obj.post_call(
input=prompt,
@ -1380,7 +1381,6 @@ class OpenAIChatCompletion(BaseLLM):
additional_args={"complete_input_dict": data},
original_response=response,
)
# return response
return convert_to_model_response_object(response_object=response, model_response_object=model_response, response_type="image_generation") # type: ignore
except OpenAIError as e:

View file

@ -4,6 +4,7 @@ Class to handle llm wildcard routing and regex pattern matching
import copy
import re
from re import Match
from typing import Dict, List, Optional
from litellm import get_llm_provider
@ -53,11 +54,12 @@ class PatternMatchRouter:
Returns:
str: regex pattern
"""
# Replace '*' with '.*' for regex matching
regex = pattern.replace("*", ".*")
# Escape other special characters
regex = re.escape(regex).replace(r"\.\*", ".*")
return f"^{regex}$"
# # Replace '*' with '.*' for regex matching
# regex = pattern.replace("*", ".*")
# # Escape other special characters
# regex = re.escape(regex).replace(r"\.\*", ".*")
# return f"^{regex}$"
return re.escape(pattern).replace(r"\*", "(.*)")
def route(self, request: Optional[str]) -> Optional[List[Dict]]:
"""
@ -84,6 +86,44 @@ class PatternMatchRouter:
return None # No matching pattern found
@staticmethod
def set_deployment_model_name(
matched_pattern: Match,
litellm_deployment_litellm_model: str,
) -> str:
"""
Set the model name for the matched pattern llm deployment
E.g.:
model_name: llmengine/* (can be any regex pattern or wildcard pattern)
litellm_params:
model: openai/*
if model_name = "llmengine/foo" -> model = "openai/foo"
"""
## BASE CASE: if the deployment model name does not contain a wildcard, return the deployment model name
if "*" not in litellm_deployment_litellm_model:
return litellm_deployment_litellm_model
wildcard_count = litellm_deployment_litellm_model.count("*")
# Extract all dynamic segments from the request
dynamic_segments = matched_pattern.groups()
if len(dynamic_segments) > wildcard_count:
raise ValueError(
f"More wildcards in the deployment model name than the pattern. Wildcard count: {wildcard_count}, dynamic segments count: {len(dynamic_segments)}"
)
# Replace the corresponding wildcards in the litellm model pattern with extracted segments
for segment in dynamic_segments:
litellm_deployment_litellm_model = litellm_deployment_litellm_model.replace(
"*", segment, 1
)
return litellm_deployment_litellm_model
def get_pattern(
self, model: str, custom_llm_provider: Optional[str] = None
) -> Optional[List[Dict]]:

View file

@ -1177,12 +1177,15 @@ from openai.types.images_response import ImagesResponse as OpenAIImageResponse
class ImageResponse(OpenAIImageResponse):
_hidden_params: dict = {}
usage: Usage
def __init__(
self,
created: Optional[int] = None,
data: Optional[List[ImageObject]] = None,
response_ms=None,
usage: Optional[Usage] = None,
hidden_params: Optional[dict] = None,
):
if response_ms:
_response_ms = response_ms
@ -1204,8 +1207,13 @@ class ImageResponse(OpenAIImageResponse):
_data.append(ImageObject(**d))
elif isinstance(d, BaseModel):
_data.append(ImageObject(**d.model_dump()))
super().__init__(created=created, data=_data)
self.usage = {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
_usage = usage or Usage(
prompt_tokens=0,
completion_tokens=0,
total_tokens=0,
)
super().__init__(created=created, data=_data, usage=_usage) # type: ignore
self._hidden_params = hidden_params or {}
def __contains__(self, key):
# Define custom behavior for the 'in' operator

View file

@ -695,3 +695,41 @@ def test_convert_to_model_response_object_error():
_response_headers=None,
convert_tool_call_to_json_mode=False,
)
def test_image_generation_openai_with_pydantic_warning(caplog):
try:
import logging
from litellm.types.utils import ImageResponse, ImageObject
convert_response_args = {
"response_object": {
"created": 1729709945,
"data": [
{
"b64_json": None,
"revised_prompt": "Generate an image of a baby sea otter. It should look incredibly cute, with big, soulful eyes and a fluffy, wet fur coat. The sea otter should be on its back, as sea otters often do, with its tiny hands holding onto a shell as if it is its precious toy. The background should be a tranquil sea under a clear sky, with soft sunlight reflecting off the waters. The color palette should be soothing with blues, browns, and white.",
"url": "https://oaidalleapiprodscus.blob.core.windows.net/private/org-ikDc4ex8NB5ZzfTf8m5WYVB7/user-JpwZsbIXubBZvan3Y3GchiiB/img-LL0uoOv4CFJIvNYxoNCKB8oc.png?st=2024-10-23T17%3A59%3A05Z&se=2024-10-23T19%3A59%3A05Z&sp=r&sv=2024-08-04&sr=b&rscd=inline&rsct=image/png&skoid=d505667d-d6c1-4a0a-bac7-5c84a87759f8&sktid=a48cca56-e6da-484e-a814-9c849652bcb3&skt=2024-10-22T19%3A26%3A22Z&ske=2024-10-23T19%3A26%3A22Z&sks=b&skv=2024-08-04&sig=Hl4wczJ3H2vZNdLRt/7JvNi6NvQGDnbNkDy15%2Bl3k5s%3D",
}
],
},
"model_response_object": ImageResponse(
created=1729709929,
data=[],
),
"response_type": "image_generation",
"stream": False,
"start_time": None,
"end_time": None,
"hidden_params": None,
"_response_headers": None,
"convert_tool_call_to_json_mode": None,
}
resp: ImageResponse = convert_to_model_response_object(**convert_response_args)
assert resp is not None
assert resp.data is not None
assert len(resp.data) == 1
assert isinstance(resp.data[0], ImageObject)
except Exception as e:
pytest.fail(f"Test failed with exception: {e}")

View file

@ -42,7 +42,7 @@ def test_add_pattern():
)
router.add_pattern("openai/*", deployment.to_json(exclude_none=True))
assert len(router.patterns) == 1
assert list(router.patterns.keys())[0] == "^openai/.*$"
assert list(router.patterns.keys())[0] == "openai/(.*)"
# try getting the pattern
assert router.route(request="openai/gpt-15") == [
@ -64,7 +64,7 @@ def test_add_pattern_vertex_ai():
)
router.add_pattern("vertex_ai/*", deployment.to_json(exclude_none=True))
assert len(router.patterns) == 1
assert list(router.patterns.keys())[0] == "^vertex_ai/.*$"
assert list(router.patterns.keys())[0] == "vertex_ai/(.*)"
# try getting the pattern
assert router.route(request="vertex_ai/gemini-1.5-flash-latest") == [
@ -99,10 +99,10 @@ def test_pattern_to_regex():
Tests that the pattern is converted to a regex
"""
router = PatternMatchRouter()
assert router._pattern_to_regex("openai/*") == "^openai/.*$"
assert router._pattern_to_regex("openai/*") == "openai/(.*)"
assert (
router._pattern_to_regex("openai/fo::*::static::*")
== "^openai/fo::.*::static::.*$"
== "openai/fo::(.*)::static::(.*)"
)

View file

@ -914,3 +914,72 @@ def test_replace_model_in_jsonl(model_list):
router = Router(model_list=model_list)
deployments = router.pattern_router.get_deployments_by_pattern(model="claude-3")
assert deployments is not None
# def test_pattern_match_deployments(model_list):
# from litellm.router_utils.pattern_match_deployments import PatternMatchRouter
# import re
# patter_router = PatternMatchRouter()
# request = "fo::hi::static::hello"
# model_name = "fo::*:static::*"
# model_name_regex = patter_router._pattern_to_regex(model_name)
# # Match against the request
# match = re.match(model_name_regex, request)
# print(f"match: {match}")
# print(f"match.end: {match.end()}")
# if match is None:
# raise ValueError("Match not found")
# updated_model = patter_router.set_deployment_model_name(
# matched_pattern=match, litellm_deployment_litellm_model="openai/*"
# )
# assert updated_model == "openai/fo::hi:static::hello"
@pytest.mark.parametrize(
"user_request_model, model_name, litellm_model, expected_model",
[
("llmengine/foo", "llmengine/*", "openai/foo", "openai/foo"),
("llmengine/foo", "llmengine/*", "openai/*", "openai/foo"),
(
"fo::hi::static::hello",
"fo::*::static::*",
"openai/fo::*:static::*",
"openai/fo::hi:static::hello",
),
(
"fo::hi::static::hello",
"fo::*::static::*",
"openai/gpt-3.5-turbo",
"openai/gpt-3.5-turbo",
),
],
)
def test_pattern_match_deployment_set_model_name(
user_request_model, model_name, litellm_model, expected_model
):
from re import Match
from litellm.router_utils.pattern_match_deployments import PatternMatchRouter
pattern_router = PatternMatchRouter()
import re
# Convert model_name into a proper regex
model_name_regex = pattern_router._pattern_to_regex(model_name)
# Match against the request
match = re.match(model_name_regex, user_request_model)
if match is None:
raise ValueError("Match not found")
# Call the set_deployment_model_name function
updated_model = pattern_router.set_deployment_model_name(match, litellm_model)
print(updated_model) # Expected output: "openai/fo::hi:static::hello"
assert updated_model == expected_model