forked from phoenix/litellm-mirror
Litellm dev 10 29 2024 (#6502)
* fix(core_helpers.py): return None, instead of raising kwargs is None error Closes https://github.com/BerriAI/litellm/issues/6500 * docs(cost_tracking.md): cleanup doc * fix(vertex_and_google_ai_studio.py): handle function call with no params passed in Closes https://github.com/BerriAI/litellm/issues/6495 * test(test_router_timeout.py): add test for router timeout + retry logic * test: update test to use module level values * (fix) Prometheus - Log Postgres DB latency, status on prometheus (#6484) * fix logging DB fails on prometheus * unit testing log to otel wrapper * unit testing for service logger + prometheus * use LATENCY buckets for service logging * fix service logging * docs clarify vertex vs gemini * (router_strategy/) ensure all async functions use async cache methods (#6489) * fix router strat * use async set / get cache in router_strategy * add coverage for router strategy * fix imports * fix batch_get_cache * use async methods for least busy * fix least busy use async methods * fix test_dual_cache_increment * test async_get_available_deployment when routing_strategy="least-busy" * (fix) proxy - fix when `STORE_MODEL_IN_DB` should be set (#6492) * set store_model_in_db at the top * correctly use store_model_in_db global * (fix) `PrometheusServicesLogger` `_get_metric` should return metric in Registry (#6486) * fix logging DB fails on prometheus * unit testing log to otel wrapper * unit testing for service logger + prometheus * use LATENCY buckets for service logging * fix service logging * fix _get_metric in prom services logger * add clear doc string * unit testing for prom service logger * bump: version 1.51.0 → 1.51.1 * Add `azure/gpt-4o-mini-2024-07-18` to model_prices_and_context_window.json (#6477) * Update utils.py (#6468) Fixed missing keys * (perf) Litellm redis router fix - ~100ms improvement (#6483) * docs(exception_mapping.md): add missing exception types Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183 * fix(main.py): register custom model pricing with specific key Ensure custom model pricing is registered to the specific model+provider key combination * test: make testing more robust for custom pricing * fix(redis_cache.py): instrument otel logging for sync redis calls ensures complete coverage for all redis cache calls * refactor: pass parent_otel_span for redis caching calls in router allows for more observability into what calls are causing latency issues * test: update tests with new params * refactor: ensure e2e otel tracing for router * refactor(router.py): add more otel tracing acrosss router catch all latency issues for router requests * fix: fix linting error * fix(router.py): fix linting error * fix: fix test * test: fix tests * fix(dual_cache.py): pass ttl to redis cache * fix: fix param * perf(cooldown_cache.py): improve cooldown cache, to store cache results in memory for 5s, prevents redis call from being made on each request reduces 100ms latency per call with caching enabled on router * fix: fix test * fix(cooldown_cache.py): handle if a result is None * fix(cooldown_cache.py): add debug statements * refactor(dual_cache.py): move to using an in-memory check for batch get cache, to prevent redis from being hit for every call * fix(cooldown_cache.py): fix linting erropr * refactor(prometheus.py): move to using standard logging payload for reading the remaining request / tokens Ensures prometheus token tracking works for anthropic as well * fix: fix linting error * fix(redis_cache.py): make sure ttl is always int (handle float values) Fixes issue where redis_client.ex was not working correctly due to float ttl * fix: fix linting error * test: update test * fix: fix linting error --------- Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: Xingyao Wang <xingyao@all-hands.dev> Co-authored-by: vibhanshu-ob <115142120+vibhanshu-ob@users.noreply.github.com>
This commit is contained in:
parent
6b9be5092f
commit
1e403a8447
18 changed files with 286 additions and 51 deletions
|
@ -786,6 +786,7 @@ def test_unmapped_vertex_anthropic_model():
|
|||
assert "max_retries" not in optional_params
|
||||
|
||||
|
||||
|
||||
@pytest.mark.parametrize("provider", ["anthropic", "vertex_ai"])
|
||||
def test_anthropic_parallel_tool_calls(provider):
|
||||
optional_params = get_optional_params(
|
||||
|
|
|
@ -12,8 +12,9 @@ from unittest.mock import AsyncMock, MagicMock, patch
|
|||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
|
||||
import pytest
|
||||
import litellm
|
||||
from litellm import get_optional_params
|
||||
|
||||
|
||||
def test_completion_pydantic_obj_2():
|
||||
|
@ -117,3 +118,63 @@ def test_build_vertex_schema():
|
|||
assert new_schema["type"] == schema["type"]
|
||||
assert new_schema["properties"] == schema["properties"]
|
||||
assert "required" in new_schema and new_schema["required"] == schema["required"]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"tools, key",
|
||||
[
|
||||
([{"googleSearchRetrieval": {}}], "googleSearchRetrieval"),
|
||||
([{"code_execution": {}}], "code_execution"),
|
||||
],
|
||||
)
|
||||
def test_vertex_tool_params(tools, key):
|
||||
|
||||
optional_params = get_optional_params(
|
||||
model="gemini-1.5-pro",
|
||||
custom_llm_provider="vertex_ai",
|
||||
tools=tools,
|
||||
)
|
||||
print(optional_params)
|
||||
assert optional_params["tools"][0][key] == {}
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"tool, expect_parameters",
|
||||
[
|
||||
(
|
||||
{
|
||||
"name": "test_function",
|
||||
"description": "test_function_description",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {"test_param": {"type": "string"}},
|
||||
},
|
||||
},
|
||||
True,
|
||||
),
|
||||
(
|
||||
{
|
||||
"name": "test_function",
|
||||
},
|
||||
False,
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_vertex_function_translation(tool, expect_parameters):
|
||||
"""
|
||||
If param not set, don't set it in the request
|
||||
"""
|
||||
|
||||
tools = [tool]
|
||||
optional_params = get_optional_params(
|
||||
model="gemini-1.5-pro",
|
||||
custom_llm_provider="vertex_ai",
|
||||
tools=tools,
|
||||
)
|
||||
print(optional_params)
|
||||
if expect_parameters:
|
||||
assert "parameters" in optional_params["tools"][0]["function_declarations"][0]
|
||||
else:
|
||||
assert (
|
||||
"parameters" not in optional_params["tools"][0]["function_declarations"][0]
|
||||
)
|
||||
|
|
|
@ -609,7 +609,7 @@ async def test_embedding_caching_redis_ttl():
|
|||
type="redis",
|
||||
host="dummy_host",
|
||||
password="dummy_password",
|
||||
default_in_redis_ttl=2.5,
|
||||
default_in_redis_ttl=2,
|
||||
)
|
||||
|
||||
inputs = [
|
||||
|
@ -635,7 +635,7 @@ async def test_embedding_caching_redis_ttl():
|
|||
print(f"redis pipeline set args: {args}")
|
||||
print(f"redis pipeline set kwargs: {kwargs}")
|
||||
assert kwargs.get("ex") == datetime.timedelta(
|
||||
seconds=2.5
|
||||
seconds=2
|
||||
) # Check if TTL is set to 2.5 seconds
|
||||
|
||||
|
||||
|
|
|
@ -612,3 +612,34 @@ def test_passing_tool_result_as_list():
|
|||
print(resp)
|
||||
|
||||
assert resp.usage.prompt_tokens_details.cached_tokens > 0
|
||||
|
||||
|
||||
def test_function_calling_with_gemini():
|
||||
litellm.set_verbose = True
|
||||
resp = litellm.completion(
|
||||
model="gemini/gemini-1.5-pro-002",
|
||||
messages=[
|
||||
{
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "You are a helpful assistant that can interact with a computer to solve tasks.\n<IMPORTANT>\n* If user provides a path, you should NOT assume it's relative to the current working directory. Instead, you should explore the file system to find the file before working on it.\n</IMPORTANT>\n",
|
||||
}
|
||||
],
|
||||
"role": "system",
|
||||
},
|
||||
{
|
||||
"content": [{"type": "text", "text": "Hey, how's it going?"}],
|
||||
"role": "user",
|
||||
},
|
||||
],
|
||||
tools=[
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "finish",
|
||||
"description": "Finish the interaction when the task is complete OR if the assistant cannot proceed further with the task.",
|
||||
},
|
||||
},
|
||||
],
|
||||
)
|
||||
|
|
|
@ -13,7 +13,7 @@ sys.path.insert(
|
|||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
|
||||
|
||||
from unittest.mock import patch, MagicMock, AsyncMock
|
||||
import os
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
@ -139,3 +139,51 @@ async def test_router_timeouts_bedrock():
|
|||
pytest.fail(
|
||||
f"Did not raise error `openai.APITimeoutError`. Instead raised error type: {type(e)}, Error: {e}"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"num_retries, expected_call_count",
|
||||
[(0, 1), (1, 2), (2, 3), (3, 4)],
|
||||
)
|
||||
def test_router_timeout_with_retries_anthropic_model(num_retries, expected_call_count):
|
||||
"""
|
||||
If request hits custom timeout, ensure it's retried.
|
||||
"""
|
||||
litellm._turn_on_debug()
|
||||
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
||||
import time
|
||||
|
||||
litellm.num_retries = num_retries
|
||||
litellm.request_timeout = 0.000001
|
||||
|
||||
router = Router(
|
||||
model_list=[
|
||||
{
|
||||
"model_name": "claude-3-haiku",
|
||||
"litellm_params": {
|
||||
"model": "anthropic/claude-3-haiku-20240307",
|
||||
},
|
||||
}
|
||||
],
|
||||
)
|
||||
|
||||
custom_client = HTTPHandler()
|
||||
|
||||
with patch.object(custom_client, "post", new=MagicMock()) as mock_client:
|
||||
try:
|
||||
|
||||
def delayed_response(*args, **kwargs):
|
||||
time.sleep(0.01) # Exceeds the 0.000001 timeout
|
||||
raise TimeoutError("Request timed out.")
|
||||
|
||||
mock_client.side_effect = delayed_response
|
||||
|
||||
router.completion(
|
||||
model="claude-3-haiku",
|
||||
messages=[{"role": "user", "content": "hello, who are u"}],
|
||||
client=custom_client,
|
||||
)
|
||||
except litellm.Timeout:
|
||||
pass
|
||||
|
||||
assert mock_client.call_count == expected_call_count
|
||||
|
|
|
@ -549,13 +549,14 @@ def test_set_llm_deployment_success_metrics(prometheus_logger):
|
|||
|
||||
standard_logging_payload = create_standard_logging_payload()
|
||||
|
||||
standard_logging_payload["hidden_params"]["additional_headers"] = {
|
||||
"x_ratelimit_remaining_requests": 123,
|
||||
"x_ratelimit_remaining_tokens": 4321,
|
||||
}
|
||||
|
||||
# Create test data
|
||||
request_kwargs = {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"response_headers": {
|
||||
"x-ratelimit-remaining-requests": 123,
|
||||
"x-ratelimit-remaining-tokens": 4321,
|
||||
},
|
||||
"litellm_params": {
|
||||
"custom_llm_provider": "openai",
|
||||
"metadata": {"model_info": {"id": "model-123"}},
|
||||
|
|
|
@ -65,3 +65,42 @@ def test_get_usage(response_obj, expected_values):
|
|||
assert usage.prompt_tokens == expected_values[0]
|
||||
assert usage.completion_tokens == expected_values[1]
|
||||
assert usage.total_tokens == expected_values[2]
|
||||
|
||||
|
||||
def test_get_additional_headers():
|
||||
additional_headers = {
|
||||
"x-ratelimit-limit-requests": "2000",
|
||||
"x-ratelimit-remaining-requests": "1999",
|
||||
"x-ratelimit-limit-tokens": "160000",
|
||||
"x-ratelimit-remaining-tokens": "160000",
|
||||
"llm_provider-date": "Tue, 29 Oct 2024 23:57:37 GMT",
|
||||
"llm_provider-content-type": "application/json",
|
||||
"llm_provider-transfer-encoding": "chunked",
|
||||
"llm_provider-connection": "keep-alive",
|
||||
"llm_provider-anthropic-ratelimit-requests-limit": "2000",
|
||||
"llm_provider-anthropic-ratelimit-requests-remaining": "1999",
|
||||
"llm_provider-anthropic-ratelimit-requests-reset": "2024-10-29T23:57:40Z",
|
||||
"llm_provider-anthropic-ratelimit-tokens-limit": "160000",
|
||||
"llm_provider-anthropic-ratelimit-tokens-remaining": "160000",
|
||||
"llm_provider-anthropic-ratelimit-tokens-reset": "2024-10-29T23:57:36Z",
|
||||
"llm_provider-request-id": "req_01F6CycZZPSHKRCCctcS1Vto",
|
||||
"llm_provider-via": "1.1 google",
|
||||
"llm_provider-cf-cache-status": "DYNAMIC",
|
||||
"llm_provider-x-robots-tag": "none",
|
||||
"llm_provider-server": "cloudflare",
|
||||
"llm_provider-cf-ray": "8da71bdbc9b57abb-SJC",
|
||||
"llm_provider-content-encoding": "gzip",
|
||||
"llm_provider-x-ratelimit-limit-requests": "2000",
|
||||
"llm_provider-x-ratelimit-remaining-requests": "1999",
|
||||
"llm_provider-x-ratelimit-limit-tokens": "160000",
|
||||
"llm_provider-x-ratelimit-remaining-tokens": "160000",
|
||||
}
|
||||
additional_logging_headers = StandardLoggingPayloadSetup.get_additional_headers(
|
||||
additional_headers
|
||||
)
|
||||
assert additional_logging_headers == {
|
||||
"x_ratelimit_limit_requests": 2000,
|
||||
"x_ratelimit_remaining_requests": 1999,
|
||||
"x_ratelimit_limit_tokens": 160000,
|
||||
"x_ratelimit_remaining_tokens": 160000,
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue