forked from phoenix/litellm-mirror
fix(router.py): support comma-separated model list for batch completion fastest response
This commit is contained in:
parent
20106715d5
commit
1ebae6e7b0
4 changed files with 94 additions and 39 deletions
|
@ -36,7 +36,7 @@ model_list:
|
|||
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
|
||||
api_key: os.environ/AZURE_EUROPE_API_KEY
|
||||
model: azure/gpt-35-turbo
|
||||
model_name: gpt-3.5-turbo
|
||||
model_name: gpt-3.5-turbo-fake-model
|
||||
- litellm_params:
|
||||
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
|
||||
api_key: os.environ/AZURE_API_KEY
|
||||
|
|
|
@ -4039,18 +4039,14 @@ async def chat_completion(
|
|||
if "api_key" in data:
|
||||
tasks.append(litellm.acompletion(**data))
|
||||
elif "," in data["model"] and llm_router is not None:
|
||||
_models_csv_string = data.pop("model")
|
||||
_models = _models_csv_string.split(",")
|
||||
if (
|
||||
data.get("fastest_response", None) is not None
|
||||
and data["fastest_response"] == True
|
||||
):
|
||||
tasks.append(
|
||||
llm_router.abatch_completion_fastest_response(
|
||||
models=_models, **data
|
||||
)
|
||||
)
|
||||
tasks.append(llm_router.abatch_completion_fastest_response(**data))
|
||||
else:
|
||||
_models_csv_string = data.pop("model")
|
||||
_models = [model.strip() for model in _models_csv_string.split(",")]
|
||||
tasks.append(llm_router.abatch_completion(models=_models, **data))
|
||||
elif "user_config" in data:
|
||||
# initialize a new router instance. make request using this Router
|
||||
|
|
|
@ -742,7 +742,7 @@ class Router:
|
|||
|
||||
@overload
|
||||
async def abatch_completion_fastest_response(
|
||||
self, models: List[str], messages: List[Dict[str, str]], stream: Literal[True], **kwargs
|
||||
self, model: str, messages: List[Dict[str, str]], stream: Literal[True], **kwargs
|
||||
) -> CustomStreamWrapper:
|
||||
...
|
||||
|
||||
|
@ -750,7 +750,7 @@ class Router:
|
|||
|
||||
@overload
|
||||
async def abatch_completion_fastest_response(
|
||||
self, models: List[str], messages: List[Dict[str, str]], stream: Literal[False] = False, **kwargs
|
||||
self, model: str, messages: List[Dict[str, str]], stream: Literal[False] = False, **kwargs
|
||||
) -> ModelResponse:
|
||||
...
|
||||
|
||||
|
@ -758,39 +758,56 @@ class Router:
|
|||
|
||||
async def abatch_completion_fastest_response(
|
||||
self,
|
||||
models: List[str],
|
||||
model: str,
|
||||
messages: List[Dict[str, str]],
|
||||
stream: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""Send 1 completion call to many models: Return Fastest Response."""
|
||||
"""
|
||||
model - List of comma-separated model names. E.g. model="gpt-4, gpt-3.5-turbo"
|
||||
|
||||
Returns fastest response from list of model names. OpenAI-compatible endpoint.
|
||||
"""
|
||||
models = [m.strip() for m in model.split(",")]
|
||||
|
||||
async def _async_completion_no_exceptions(
|
||||
model: str, messages: List[Dict[str, str]], **kwargs
|
||||
):
|
||||
model: str, messages: List[Dict[str, str]], **kwargs: Any
|
||||
) -> Union[ModelResponse, CustomStreamWrapper, Exception]:
|
||||
"""
|
||||
Wrapper around self.async_completion that catches exceptions and returns them as a result
|
||||
Wrapper around self.acompletion that catches exceptions and returns them as a result
|
||||
"""
|
||||
try:
|
||||
return await self.acompletion(model=model, messages=messages, **kwargs)
|
||||
except asyncio.CancelledError:
|
||||
verbose_router_logger.debug(
|
||||
"Received 'task.cancel'. Cancelling call w/ model={}.".format(model)
|
||||
)
|
||||
raise
|
||||
except Exception as e:
|
||||
return e
|
||||
|
||||
_tasks = []
|
||||
pending_tasks = [] # type: ignore
|
||||
|
||||
async def check_response(task):
|
||||
async def check_response(task: asyncio.Task):
|
||||
nonlocal pending_tasks
|
||||
try:
|
||||
result = await task
|
||||
if isinstance(result, (ModelResponse, CustomStreamWrapper)):
|
||||
verbose_router_logger.debug(
|
||||
"Received successful response. Cancelling other LLM API calls."
|
||||
)
|
||||
# If a desired response is received, cancel all other pending tasks
|
||||
for t in pending_tasks:
|
||||
t.cancel()
|
||||
return result
|
||||
else:
|
||||
except Exception:
|
||||
# Ignore exceptions, let the loop handle them
|
||||
pass
|
||||
finally:
|
||||
# Remove the task from pending tasks if it finishes
|
||||
try:
|
||||
pending_tasks.remove(task)
|
||||
except Exception as e:
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
for model in models:
|
||||
|
@ -799,21 +816,22 @@ class Router:
|
|||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
)
|
||||
task.add_done_callback(check_response)
|
||||
_tasks.append(task)
|
||||
pending_tasks.append(task)
|
||||
|
||||
responses = await asyncio.gather(*_tasks, return_exceptions=True)
|
||||
if isinstance(responses[0], Exception) or isinstance(
|
||||
responses[0], BaseException
|
||||
):
|
||||
raise responses[0]
|
||||
_response: Union[ModelResponse, CustomStreamWrapper] = responses[
|
||||
0
|
||||
] # return first value from list
|
||||
# Await the first task to complete successfully
|
||||
while pending_tasks:
|
||||
done, pending_tasks = await asyncio.wait( # type: ignore
|
||||
pending_tasks, return_when=asyncio.FIRST_COMPLETED
|
||||
)
|
||||
for completed_task in done:
|
||||
result = await check_response(completed_task)
|
||||
if result is not None:
|
||||
# Return the first successful result
|
||||
result._hidden_params["fastest_response_batch_completion"] = True
|
||||
return result
|
||||
|
||||
_response._hidden_params["fastest_response_batch_completion"] = True
|
||||
return _response
|
||||
# If we exit the loop without returning, all tasks failed
|
||||
raise Exception("All tasks failed")
|
||||
|
||||
def image_generation(self, prompt: str, model: str, **kwargs):
|
||||
try:
|
||||
|
@ -3624,7 +3642,6 @@ class Router:
|
|||
## get healthy deployments
|
||||
### get all deployments
|
||||
healthy_deployments = [m for m in self.model_list if m["model_name"] == model]
|
||||
|
||||
if len(healthy_deployments) == 0:
|
||||
# check if the user sent in a deployment name instead
|
||||
healthy_deployments = [
|
||||
|
|
|
@ -64,7 +64,7 @@ async def test_batch_completion_multiple_models(mode):
|
|||
from openai.types.chat.chat_completion import ChatCompletion
|
||||
|
||||
response = await router.abatch_completion_fastest_response(
|
||||
models=["gpt-3.5-turbo", "groq-llama"],
|
||||
model="gpt-3.5-turbo, groq-llama",
|
||||
messages=[
|
||||
{"role": "user", "content": "is litellm becoming a better product ?"}
|
||||
],
|
||||
|
@ -72,3 +72,45 @@ async def test_batch_completion_multiple_models(mode):
|
|||
)
|
||||
|
||||
ChatCompletion.model_validate(response.model_dump(), strict=True)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_batch_completion_fastest_response_unit_test():
|
||||
"""
|
||||
Unit test to confirm fastest response will always return the response which arrives earliest.
|
||||
|
||||
2 models -> 1 is cached, the other is a real llm api call => assert cached response always returned
|
||||
"""
|
||||
litellm.set_verbose = True
|
||||
|
||||
router = litellm.Router(
|
||||
model_list=[
|
||||
{
|
||||
"model_name": "gpt-4",
|
||||
"litellm_params": {
|
||||
"model": "gpt-4",
|
||||
},
|
||||
"model_info": {"id": "1"},
|
||||
},
|
||||
{
|
||||
"model_name": "gpt-3.5-turbo",
|
||||
"litellm_params": {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"mock_response": "This is a fake response",
|
||||
},
|
||||
"model_info": {"id": "2"},
|
||||
},
|
||||
]
|
||||
)
|
||||
|
||||
response = await router.abatch_completion_fastest_response(
|
||||
model="gpt-4, gpt-3.5-turbo",
|
||||
messages=[
|
||||
{"role": "user", "content": "is litellm becoming a better product ?"}
|
||||
],
|
||||
max_tokens=500,
|
||||
)
|
||||
|
||||
assert response._hidden_params["model_id"] == "2"
|
||||
assert response.choices[0].message.content == "This is a fake response"
|
||||
print(f"response: {response}")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue