forked from phoenix/litellm-mirror
fix(openai.py): creat MistralConfig with response_format mapping for mistral api
This commit is contained in:
parent
20fe4ffd6b
commit
20456968e9
5 changed files with 129 additions and 46 deletions
|
@ -755,7 +755,7 @@ from .llms.bedrock import (
|
|||
AmazonMistralConfig,
|
||||
AmazonBedrockGlobalConfig,
|
||||
)
|
||||
from .llms.openai import OpenAIConfig, OpenAITextCompletionConfig
|
||||
from .llms.openai import OpenAIConfig, OpenAITextCompletionConfig, MistralConfig
|
||||
from .llms.azure import AzureOpenAIConfig, AzureOpenAIError
|
||||
from .llms.watsonx import IBMWatsonXAIConfig
|
||||
from .main import * # type: ignore
|
||||
|
|
|
@ -53,6 +53,113 @@ class OpenAIError(Exception):
|
|||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class MistralConfig:
|
||||
"""
|
||||
Reference: https://docs.mistral.ai/api/
|
||||
|
||||
The class `MistralConfig` provides configuration for the Mistral's Chat API interface. Below are the parameters:
|
||||
|
||||
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2. API Default - 0.7.
|
||||
|
||||
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling. API Default - 1.
|
||||
|
||||
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion. API Default - null.
|
||||
|
||||
- `tools` (list or null): A list of available tools for the model. Use this to specify functions for which the model can generate JSON inputs.
|
||||
|
||||
- `tool_choice` (string - 'auto'/'any'/'none' or null): Specifies if/how functions are called. If set to none the model won't call a function and will generate a message instead. If set to auto the model can choose to either generate a message or call a function. If set to any the model is forced to call a function. Default - 'auto'.
|
||||
|
||||
- `random_seed` (integer or null): The seed to use for random sampling. If set, different calls will generate deterministic results.
|
||||
|
||||
- `safe_prompt` (boolean): Whether to inject a safety prompt before all conversations. API Default - 'false'.
|
||||
|
||||
- `response_format` (object or null): An object specifying the format that the model must output. Setting to { "type": "json_object" } enables JSON mode, which guarantees the message the model generates is in JSON. When using JSON mode you MUST also instruct the model to produce JSON yourself with a system or a user message.
|
||||
"""
|
||||
|
||||
temperature: Optional[int] = None
|
||||
top_p: Optional[int] = None
|
||||
max_tokens: Optional[int] = None
|
||||
tools: Optional[list] = None
|
||||
tool_choice: Optional[Literal["auto", "any", "none"]] = None
|
||||
random_seed: Optional[int] = None
|
||||
safe_prompt: Optional[bool] = None
|
||||
response_format: Optional[dict] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
temperature: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
tools: Optional[list] = None,
|
||||
tool_choice: Optional[Literal["auto", "any", "none"]] = None,
|
||||
random_seed: Optional[int] = None,
|
||||
safe_prompt: Optional[bool] = None,
|
||||
response_format: Optional[dict] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self):
|
||||
return [
|
||||
"stream",
|
||||
"temperature",
|
||||
"top_p",
|
||||
"max_tokens",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"seed",
|
||||
"response_format",
|
||||
]
|
||||
|
||||
def _map_tool_choice(self, tool_choice: str) -> str:
|
||||
if tool_choice == "auto" or tool_choice == "none":
|
||||
return tool_choice
|
||||
elif tool_choice == "required":
|
||||
return "any"
|
||||
else: # openai 'tool_choice' object param not supported by Mistral API
|
||||
return "any"
|
||||
|
||||
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
||||
for param, value in non_default_params.items():
|
||||
if param == "max_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
if param == "tools":
|
||||
optional_params["tools"] = value
|
||||
if param == "stream" and value == True:
|
||||
optional_params["stream"] = value
|
||||
if param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
if param == "top_p":
|
||||
optional_params["top_p"] = value
|
||||
if param == "tool_choice" and isinstance(value, str):
|
||||
optional_params["tool_choice"] = self._map_tool_choice(
|
||||
tool_choice=value
|
||||
)
|
||||
if param == "seed":
|
||||
optional_params["extra_body"] = {"random_seed": value}
|
||||
return optional_params
|
||||
|
||||
|
||||
class OpenAIConfig:
|
||||
"""
|
||||
Reference: https://platform.openai.com/docs/api-reference/chat/create
|
||||
|
@ -1327,8 +1434,8 @@ class OpenAIAssistantsAPI(BaseLLM):
|
|||
client=client,
|
||||
)
|
||||
|
||||
thread_message: OpenAIMessage = openai_client.beta.threads.messages.create(
|
||||
thread_id, **message_data
|
||||
thread_message: OpenAIMessage = openai_client.beta.threads.messages.create( # type: ignore
|
||||
thread_id, **message_data # type: ignore
|
||||
)
|
||||
|
||||
response_obj: Optional[OpenAIMessage] = None
|
||||
|
@ -1458,7 +1565,7 @@ class OpenAIAssistantsAPI(BaseLLM):
|
|||
client=client,
|
||||
)
|
||||
|
||||
response = openai_client.beta.threads.runs.create_and_poll(
|
||||
response = openai_client.beta.threads.runs.create_and_poll( # type: ignore
|
||||
thread_id=thread_id,
|
||||
assistant_id=assistant_id,
|
||||
additional_instructions=additional_instructions,
|
||||
|
|
|
@ -665,6 +665,7 @@ def test_completion_mistral_api():
|
|||
"content": "Hey, how's it going?",
|
||||
}
|
||||
],
|
||||
seed=10,
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
|
|
|
@ -37,14 +37,19 @@ def get_current_weather(location, unit="fahrenheit"):
|
|||
|
||||
|
||||
# Example dummy function hard coded to return the same weather
|
||||
|
||||
|
||||
# In production, this could be your backend API or an external API
|
||||
def test_parallel_function_call():
|
||||
@pytest.mark.parametrize(
|
||||
"model", ["gpt-3.5-turbo-1106", "mistral/mistral-large-latest"]
|
||||
)
|
||||
def test_parallel_function_call(model):
|
||||
try:
|
||||
# Step 1: send the conversation and available functions to the model
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What's the weather like in San Francisco, Tokyo, and Paris?",
|
||||
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
|
||||
}
|
||||
]
|
||||
tools = [
|
||||
|
@ -58,7 +63,7 @@ def test_parallel_function_call():
|
|||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
"description": "The city and state",
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
|
@ -71,7 +76,7 @@ def test_parallel_function_call():
|
|||
}
|
||||
]
|
||||
response = litellm.completion(
|
||||
model="gpt-3.5-turbo-1106",
|
||||
model=model,
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
tool_choice="auto", # auto is default, but we'll be explicit
|
||||
|
@ -83,8 +88,8 @@ def test_parallel_function_call():
|
|||
print("length of tool calls", len(tool_calls))
|
||||
print("Expecting there to be 3 tool calls")
|
||||
assert (
|
||||
len(tool_calls) > 1
|
||||
) # this has to call the function for SF, Tokyo and parise
|
||||
len(tool_calls) > 0
|
||||
) # this has to call the function for SF, Tokyo and paris
|
||||
|
||||
# Step 2: check if the model wanted to call a function
|
||||
if tool_calls:
|
||||
|
@ -116,7 +121,7 @@ def test_parallel_function_call():
|
|||
) # extend conversation with function response
|
||||
print(f"messages: {messages}")
|
||||
second_response = litellm.completion(
|
||||
model="gpt-3.5-turbo-1106", messages=messages, temperature=0.2, seed=22
|
||||
model=model, messages=messages, temperature=0.2, seed=22
|
||||
) # get a new response from the model where it can see the function response
|
||||
print("second response\n", second_response)
|
||||
return second_response
|
||||
|
|
|
@ -5617,32 +5617,9 @@ def get_optional_params(
|
|||
model=model, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
if temperature is not None:
|
||||
optional_params["temperature"] = temperature
|
||||
if top_p is not None:
|
||||
optional_params["top_p"] = top_p
|
||||
if stream is not None:
|
||||
optional_params["stream"] = stream
|
||||
if max_tokens is not None:
|
||||
optional_params["max_tokens"] = max_tokens
|
||||
if tools is not None:
|
||||
optional_params["tools"] = tools
|
||||
if tool_choice is not None:
|
||||
optional_params["tool_choice"] = tool_choice
|
||||
if response_format is not None:
|
||||
optional_params["response_format"] = response_format
|
||||
# check safe_mode, random_seed: https://docs.mistral.ai/api/#operation/createChatCompletion
|
||||
safe_mode = passed_params.pop("safe_mode", None)
|
||||
random_seed = passed_params.pop("random_seed", None)
|
||||
extra_body = {}
|
||||
if safe_mode is not None:
|
||||
extra_body["safe_mode"] = safe_mode
|
||||
if random_seed is not None:
|
||||
extra_body["random_seed"] = random_seed
|
||||
optional_params["extra_body"] = (
|
||||
extra_body # openai client supports `extra_body` param
|
||||
optional_params = litellm.MistralConfig().map_openai_params(
|
||||
non_default_params=non_default_params, optional_params=optional_params
|
||||
)
|
||||
|
||||
elif custom_llm_provider == "groq":
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
|
@ -5843,7 +5820,8 @@ def get_optional_params(
|
|||
for k in passed_params.keys():
|
||||
if k not in default_params.keys():
|
||||
extra_body[k] = passed_params[k]
|
||||
optional_params["extra_body"] = extra_body
|
||||
optional_params.setdefault("extra_body", {})
|
||||
optional_params["extra_body"] = {**optional_params["extra_body"], **extra_body}
|
||||
else:
|
||||
# if user passed in non-default kwargs for specific providers/models, pass them along
|
||||
for k in passed_params.keys():
|
||||
|
@ -6212,15 +6190,7 @@ def get_supported_openai_params(model: str, custom_llm_provider: str):
|
|||
"max_retries",
|
||||
]
|
||||
elif custom_llm_provider == "mistral":
|
||||
return [
|
||||
"temperature",
|
||||
"top_p",
|
||||
"stream",
|
||||
"max_tokens",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"response_format",
|
||||
]
|
||||
return litellm.MistralConfig().get_supported_openai_params()
|
||||
elif custom_llm_provider == "replicate":
|
||||
return [
|
||||
"stream",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue