Merge branch 'main' into litellm_support_dynamic_rpm_limiting

This commit is contained in:
Krish Dholakia 2024-07-02 17:51:18 -07:00 committed by GitHub
commit 21d3a28e51
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
27 changed files with 1067 additions and 133 deletions

View file

@ -20,6 +20,8 @@ This covers:
- **Spend Tracking**
- ✅ [Tracking Spend for Custom Tags](./proxy/enterprise#tracking-spend-for-custom-tags)
- ✅ [API Endpoints to get Spend Reports per Team, API Key, Customer](./proxy/cost_tracking.md#✨-enterprise-api-endpoints-to-get-spend)
- **Advanced Metrics**
- ✅ [`x-ratelimit-remaining-requests`, `x-ratelimit-remaining-tokens` for LLM APIs on Prometheus](./proxy/prometheus#✨-enterprise-llm-remaining-requests-and-remaining-tokens)
- **Guardrails, PII Masking, Content Moderation**
- ✅ [Content Moderation with LLM Guard, LlamaGuard, Secret Detection, Google Text Moderations](./proxy/enterprise#content-moderation)
- ✅ [Prompt Injection Detection (with LakeraAI API)](./proxy/enterprise#prompt-injection-detection---lakeraai)

View file

@ -89,3 +89,30 @@ Expected Output:
```bash
# no info statements
```
## Common Errors
1. "No available deployments..."
```
No deployments available for selected model, Try again in 60 seconds. Passed model=claude-3-5-sonnet. pre-call-checks=False, allowed_model_region=n/a.
```
This can be caused due to all your models hitting rate limit errors, causing the cooldown to kick in.
How to control this?
- Adjust the cooldown time
```yaml
router_settings:
cooldown_time: 0 # 👈 KEY CHANGE
```
- Disable Cooldowns [NOT RECOMMENDED]
```yaml
router_settings:
disable_cooldowns: True
```
This is not recommended, as it will lead to requests being routed to deployments over their tpm/rpm limit.

View file

@ -23,6 +23,8 @@ Features:
- **Spend Tracking**
- ✅ [Tracking Spend for Custom Tags](#tracking-spend-for-custom-tags)
- ✅ [API Endpoints to get Spend Reports per Team, API Key, Customer](cost_tracking.md#✨-enterprise-api-endpoints-to-get-spend)
- **Advanced Metrics**
- ✅ [`x-ratelimit-remaining-requests`, `x-ratelimit-remaining-tokens` for LLM APIs on Prometheus](prometheus#✨-enterprise-llm-remaining-requests-and-remaining-tokens)
- **Guardrails, PII Masking, Content Moderation**
- ✅ [Content Moderation with LLM Guard, LlamaGuard, Secret Detection, Google Text Moderations](#content-moderation)
- ✅ [Prompt Injection Detection (with LakeraAI API)](#prompt-injection-detection---lakeraai)

View file

@ -1,3 +1,6 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# 📈 Prometheus metrics [BETA]
LiteLLM Exposes a `/metrics` endpoint for Prometheus to Poll
@ -61,6 +64,56 @@ http://localhost:4000/metrics
| `litellm_remaining_api_key_budget_metric` | Remaining Budget for API Key (A key Created on LiteLLM)|
### ✨ (Enterprise) LLM Remaining Requests and Remaining Tokens
Set this on your config.yaml to allow you to track how close you are to hitting your TPM / RPM limits on each model group
```yaml
litellm_settings:
success_callback: ["prometheus"]
failure_callback: ["prometheus"]
return_response_headers: true # ensures the LLM API calls track the response headers
```
| Metric Name | Description |
|----------------------|--------------------------------------|
| `litellm_remaining_requests_metric` | Track `x-ratelimit-remaining-requests` returned from LLM API Deployment |
| `litellm_remaining_tokens` | Track `x-ratelimit-remaining-tokens` return from LLM API Deployment |
Example Metric
<Tabs>
<TabItem value="Remaining Requests" label="Remaining Requests">
```shell
litellm_remaining_requests
{
api_base="https://api.openai.com/v1",
api_provider="openai",
litellm_model_name="gpt-3.5-turbo",
model_group="gpt-3.5-turbo"
}
8998.0
```
</TabItem>
<TabItem value="Requests" label="Remaining Tokens">
```shell
litellm_remaining_tokens
{
api_base="https://api.openai.com/v1",
api_provider="openai",
litellm_model_name="gpt-3.5-turbo",
model_group="gpt-3.5-turbo"
}
999981.0
```
</TabItem>
</Tabs>
## Monitor System Health
To monitor the health of litellm adjacent services (redis / postgres), do:

View file

@ -152,6 +152,27 @@ response = chat(messages)
print(response)
```
</TabItem>
<TabItem value="langchain js" label="Langchain JS">
```js
import { ChatOpenAI } from "@langchain/openai";
const model = new ChatOpenAI({
modelName: "gpt-4",
openAIApiKey: "sk-1234",
modelKwargs: {"metadata": "hello world"} // 👈 PASS Additional params here
}, {
basePath: "http://0.0.0.0:4000",
});
const message = await model.invoke("Hi there!");
console.log(message);
```
</TabItem>
</Tabs>

View file

@ -815,6 +815,35 @@ model_list:
</TabItem>
</Tabs>
**Expected Response**
```
No deployments available for selected model, Try again in 60 seconds. Passed model=claude-3-5-sonnet. pre-call-checks=False, allowed_model_region=n/a.
```
#### **Disable cooldowns**
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import Router
router = Router(..., disable_cooldowns=True)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```yaml
router_settings:
disable_cooldowns: True
```
</TabItem>
</Tabs>
### Retries
For both async + sync functions, we support retrying failed requests.

View file

@ -125,6 +125,9 @@ llm_guard_mode: Literal["all", "key-specific", "request-specific"] = "all"
##################
### PREVIEW FEATURES ###
enable_preview_features: bool = False
return_response_headers: bool = (
False # get response headers from LLM Api providers - example x-remaining-requests,
)
##################
logging: bool = True
caching: bool = (

View file

@ -2,14 +2,20 @@
#### What this does ####
# On success, log events to Prometheus
import dotenv, os
import requests # type: ignore
import datetime
import os
import subprocess
import sys
import traceback
import datetime, subprocess, sys
import litellm, uuid
from litellm._logging import print_verbose, verbose_logger
import uuid
from typing import Optional, Union
import dotenv
import requests # type: ignore
import litellm
from litellm._logging import print_verbose, verbose_logger
class PrometheusLogger:
# Class variables or attributes
@ -20,6 +26,8 @@ class PrometheusLogger:
try:
from prometheus_client import Counter, Gauge
from litellm.proxy.proxy_server import premium_user
self.litellm_llm_api_failed_requests_metric = Counter(
name="litellm_llm_api_failed_requests_metric",
documentation="Total number of failed LLM API calls via litellm",
@ -88,6 +96,31 @@ class PrometheusLogger:
labelnames=["hashed_api_key", "api_key_alias"],
)
# Litellm-Enterprise Metrics
if premium_user is True:
# Remaining Rate Limit for model
self.litellm_remaining_requests_metric = Gauge(
"litellm_remaining_requests",
"remaining requests for model, returned from LLM API Provider",
labelnames=[
"model_group",
"api_provider",
"api_base",
"litellm_model_name",
],
)
self.litellm_remaining_tokens_metric = Gauge(
"litellm_remaining_tokens",
"remaining tokens for model, returned from LLM API Provider",
labelnames=[
"model_group",
"api_provider",
"api_base",
"litellm_model_name",
],
)
except Exception as e:
print_verbose(f"Got exception on init prometheus client {str(e)}")
raise e
@ -104,6 +137,8 @@ class PrometheusLogger:
):
try:
# Define prometheus client
from litellm.proxy.proxy_server import premium_user
verbose_logger.debug(
f"prometheus Logging - Enters logging function for model {kwargs}"
)
@ -199,6 +234,10 @@ class PrometheusLogger:
user_api_key, user_api_key_alias
).set(_remaining_api_key_budget)
# set x-ratelimit headers
if premium_user is True:
self.set_remaining_tokens_requests_metric(kwargs)
### FAILURE INCREMENT ###
if "exception" in kwargs:
self.litellm_llm_api_failed_requests_metric.labels(
@ -216,6 +255,58 @@ class PrometheusLogger:
verbose_logger.debug(traceback.format_exc())
pass
def set_remaining_tokens_requests_metric(self, request_kwargs: dict):
try:
verbose_logger.debug("setting remaining tokens requests metric")
_response_headers = request_kwargs.get("response_headers")
_litellm_params = request_kwargs.get("litellm_params", {}) or {}
_metadata = _litellm_params.get("metadata", {})
litellm_model_name = request_kwargs.get("model", None)
model_group = _metadata.get("model_group", None)
api_base = _metadata.get("api_base", None)
llm_provider = _litellm_params.get("custom_llm_provider", None)
remaining_requests = None
remaining_tokens = None
# OpenAI / OpenAI Compatible headers
if (
_response_headers
and "x-ratelimit-remaining-requests" in _response_headers
):
remaining_requests = _response_headers["x-ratelimit-remaining-requests"]
if (
_response_headers
and "x-ratelimit-remaining-tokens" in _response_headers
):
remaining_tokens = _response_headers["x-ratelimit-remaining-tokens"]
verbose_logger.debug(
f"remaining requests: {remaining_requests}, remaining tokens: {remaining_tokens}"
)
if remaining_requests:
"""
"model_group",
"api_provider",
"api_base",
"litellm_model_name"
"""
self.litellm_remaining_requests_metric.labels(
model_group, llm_provider, api_base, litellm_model_name
).set(remaining_requests)
if remaining_tokens:
self.litellm_remaining_tokens_metric.labels(
model_group, llm_provider, api_base, litellm_model_name
).set(remaining_tokens)
except Exception as e:
verbose_logger.error(
"Prometheus Error: set_remaining_tokens_requests_metric. Exception occured - {}".format(
str(e)
)
)
return
def safe_get_remaining_budget(
max_budget: Optional[float], spend: Optional[float]

View file

@ -606,6 +606,13 @@ class SlackAlerting(CustomLogger):
and request_data.get("litellm_status", "") != "success"
and request_data.get("litellm_status", "") != "fail"
):
## CHECK IF CACHE IS UPDATED
litellm_call_id = request_data.get("litellm_call_id", "")
status: Optional[str] = await self.internal_usage_cache.async_get_cache(
key="request_status:{}".format(litellm_call_id), local_only=True
)
if status is not None and (status == "success" or status == "fail"):
return
if request_data.get("deployment", None) is not None and isinstance(
request_data["deployment"], dict
):

View file

@ -1,6 +1,7 @@
import asyncio
import json
import os
import time
import types
import uuid
from typing import (
@ -21,8 +22,10 @@ from openai import AsyncAzureOpenAI, AzureOpenAI
from typing_extensions import overload
import litellm
from litellm import OpenAIConfig
from litellm import ImageResponse, OpenAIConfig
from litellm.caching import DualCache
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.utils import (
Choices,
CustomStreamWrapper,
@ -32,6 +35,7 @@ from litellm.utils import (
UnsupportedParamsError,
convert_to_model_response_object,
get_secret,
modify_url,
)
from ..types.llms.openai import (
@ -458,6 +462,36 @@ class AzureChatCompletion(BaseLLM):
return azure_client
async def make_azure_openai_chat_completion_request(
self,
azure_client: AsyncAzureOpenAI,
data: dict,
timeout: Union[float, httpx.Timeout],
):
"""
Helper to:
- call chat.completions.create.with_raw_response when litellm.return_response_headers is True
- call chat.completions.create by default
"""
try:
if litellm.return_response_headers is True:
raw_response = (
await azure_client.chat.completions.with_raw_response.create(
**data, timeout=timeout
)
)
headers = dict(raw_response.headers)
response = raw_response.parse()
return headers, response
else:
response = await azure_client.chat.completions.create(
**data, timeout=timeout
)
return None, response
except Exception as e:
raise e
def completion(
self,
model: str,
@ -470,7 +504,7 @@ class AzureChatCompletion(BaseLLM):
azure_ad_token: str,
print_verbose: Callable,
timeout: Union[float, httpx.Timeout],
logging_obj,
logging_obj: LiteLLMLoggingObj,
optional_params,
litellm_params,
logger_fn,
@ -649,9 +683,9 @@ class AzureChatCompletion(BaseLLM):
data: dict,
timeout: Any,
model_response: ModelResponse,
logging_obj: LiteLLMLoggingObj,
azure_ad_token: Optional[str] = None,
client=None, # this is the AsyncAzureOpenAI
logging_obj=None,
):
response = None
try:
@ -701,9 +735,13 @@ class AzureChatCompletion(BaseLLM):
"complete_input_dict": data,
},
)
response = await azure_client.chat.completions.create(
**data, timeout=timeout
headers, response = await self.make_azure_openai_chat_completion_request(
azure_client=azure_client,
data=data,
timeout=timeout,
)
logging_obj.model_call_details["response_headers"] = headers
stringified_response = response.model_dump()
logging_obj.post_call(
@ -812,7 +850,7 @@ class AzureChatCompletion(BaseLLM):
async def async_streaming(
self,
logging_obj,
logging_obj: LiteLLMLoggingObj,
api_base: str,
api_key: str,
api_version: str,
@ -861,9 +899,14 @@ class AzureChatCompletion(BaseLLM):
"complete_input_dict": data,
},
)
response = await azure_client.chat.completions.create(
**data, timeout=timeout
headers, response = await self.make_azure_openai_chat_completion_request(
azure_client=azure_client,
data=data,
timeout=timeout,
)
logging_obj.model_call_details["response_headers"] = headers
# return response
streamwrapper = CustomStreamWrapper(
completion_stream=response,
@ -1011,6 +1054,234 @@ class AzureChatCompletion(BaseLLM):
else:
raise AzureOpenAIError(status_code=500, message=str(e))
async def make_async_azure_httpx_request(
self,
client: Optional[AsyncHTTPHandler],
timeout: Optional[Union[float, httpx.Timeout]],
api_base: str,
api_version: str,
api_key: str,
data: dict,
) -> httpx.Response:
"""
Implemented for azure dall-e-2 image gen calls
Alternative to needing a custom transport implementation
"""
if client is None:
_params = {}
if timeout is not None:
if isinstance(timeout, float) or isinstance(timeout, int):
_httpx_timeout = httpx.Timeout(timeout)
_params["timeout"] = _httpx_timeout
else:
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
async_handler = AsyncHTTPHandler(**_params) # type: ignore
else:
async_handler = client # type: ignore
if (
"images/generations" in api_base
and api_version
in [ # dall-e-3 starts from `2023-12-01-preview` so we should be able to avoid conflict
"2023-06-01-preview",
"2023-07-01-preview",
"2023-08-01-preview",
"2023-09-01-preview",
"2023-10-01-preview",
]
): # CREATE + POLL for azure dall-e-2 calls
api_base = modify_url(
original_url=api_base, new_path="/openai/images/generations:submit"
)
data.pop(
"model", None
) # REMOVE 'model' from dall-e-2 arg https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#request-a-generated-image-dall-e-2-preview
response = await async_handler.post(
url=api_base,
data=json.dumps(data),
headers={
"Content-Type": "application/json",
"api-key": api_key,
},
)
operation_location_url = response.headers["operation-location"]
response = await async_handler.get(
url=operation_location_url,
headers={
"api-key": api_key,
},
)
await response.aread()
timeout_secs: int = 120
start_time = time.time()
if "status" not in response.json():
raise Exception(
"Expected 'status' in response. Got={}".format(response.json())
)
while response.json()["status"] not in ["succeeded", "failed"]:
if time.time() - start_time > timeout_secs:
timeout_msg = {
"error": {
"code": "Timeout",
"message": "Operation polling timed out.",
}
}
raise AzureOpenAIError(
status_code=408, message="Operation polling timed out."
)
await asyncio.sleep(int(response.headers.get("retry-after") or 10))
response = await async_handler.get(
url=operation_location_url,
headers={
"api-key": api_key,
},
)
await response.aread()
if response.json()["status"] == "failed":
error_data = response.json()
raise AzureOpenAIError(status_code=400, message=json.dumps(error_data))
return response
return await async_handler.post(
url=api_base,
json=data,
headers={
"Content-Type": "application/json;",
"api-key": api_key,
},
)
def make_sync_azure_httpx_request(
self,
client: Optional[HTTPHandler],
timeout: Optional[Union[float, httpx.Timeout]],
api_base: str,
api_version: str,
api_key: str,
data: dict,
) -> httpx.Response:
"""
Implemented for azure dall-e-2 image gen calls
Alternative to needing a custom transport implementation
"""
if client is None:
_params = {}
if timeout is not None:
if isinstance(timeout, float) or isinstance(timeout, int):
_httpx_timeout = httpx.Timeout(timeout)
_params["timeout"] = _httpx_timeout
else:
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
sync_handler = HTTPHandler(**_params) # type: ignore
else:
sync_handler = client # type: ignore
if (
"images/generations" in api_base
and api_version
in [ # dall-e-3 starts from `2023-12-01-preview` so we should be able to avoid conflict
"2023-06-01-preview",
"2023-07-01-preview",
"2023-08-01-preview",
"2023-09-01-preview",
"2023-10-01-preview",
]
): # CREATE + POLL for azure dall-e-2 calls
api_base = modify_url(
original_url=api_base, new_path="/openai/images/generations:submit"
)
data.pop(
"model", None
) # REMOVE 'model' from dall-e-2 arg https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#request-a-generated-image-dall-e-2-preview
response = sync_handler.post(
url=api_base,
data=json.dumps(data),
headers={
"Content-Type": "application/json",
"api-key": api_key,
},
)
operation_location_url = response.headers["operation-location"]
response = sync_handler.get(
url=operation_location_url,
headers={
"api-key": api_key,
},
)
response.read()
timeout_secs: int = 120
start_time = time.time()
if "status" not in response.json():
raise Exception(
"Expected 'status' in response. Got={}".format(response.json())
)
while response.json()["status"] not in ["succeeded", "failed"]:
if time.time() - start_time > timeout_secs:
raise AzureOpenAIError(
status_code=408, message="Operation polling timed out."
)
time.sleep(int(response.headers.get("retry-after") or 10))
response = sync_handler.get(
url=operation_location_url,
headers={
"api-key": api_key,
},
)
response.read()
if response.json()["status"] == "failed":
error_data = response.json()
raise AzureOpenAIError(status_code=400, message=json.dumps(error_data))
return response
return sync_handler.post(
url=api_base,
json=data,
headers={
"Content-Type": "application/json;",
"api-key": api_key,
},
)
def create_azure_base_url(
self, azure_client_params: dict, model: Optional[str]
) -> str:
api_base: str = azure_client_params.get(
"azure_endpoint", ""
) # "https://example-endpoint.openai.azure.com"
if api_base.endswith("/"):
api_base = api_base.rstrip("/")
api_version: str = azure_client_params.get("api_version", "")
if model is None:
model = ""
new_api_base = (
api_base
+ "/openai/deployments/"
+ model
+ "/images/generations"
+ "?api-version="
+ api_version
)
return new_api_base
async def aimage_generation(
self,
data: dict,
@ -1022,30 +1293,40 @@ class AzureChatCompletion(BaseLLM):
logging_obj=None,
timeout=None,
):
response = None
response: Optional[dict] = None
try:
if client is None:
client_session = litellm.aclient_session or httpx.AsyncClient(
transport=AsyncCustomHTTPTransport(),
# response = await azure_client.images.generate(**data, timeout=timeout)
api_base: str = azure_client_params.get(
"api_base", ""
) # "https://example-endpoint.openai.azure.com"
if api_base.endswith("/"):
api_base = api_base.rstrip("/")
api_version: str = azure_client_params.get("api_version", "")
img_gen_api_base = self.create_azure_base_url(
azure_client_params=azure_client_params, model=data.get("model", "")
)
azure_client = AsyncAzureOpenAI(
http_client=client_session, **azure_client_params
)
else:
azure_client = client
## LOGGING
logging_obj.pre_call(
input=data["prompt"],
api_key=azure_client.api_key,
api_key=api_key,
additional_args={
"headers": {"api_key": azure_client.api_key},
"api_base": azure_client._base_url._uri_reference,
"acompletion": True,
"complete_input_dict": data,
"api_base": img_gen_api_base,
"headers": {"api_key": api_key},
},
)
response = await azure_client.images.generate(**data, timeout=timeout)
stringified_response = response.model_dump()
httpx_response: httpx.Response = await self.make_async_azure_httpx_request(
client=None,
timeout=timeout,
api_base=img_gen_api_base,
api_version=api_version,
api_key=api_key,
data=data,
)
response = httpx_response.json()["result"]
stringified_response = response
## LOGGING
logging_obj.post_call(
input=input,
@ -1128,28 +1409,30 @@ class AzureChatCompletion(BaseLLM):
response = self.aimage_generation(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_key=api_key, client=client, azure_client_params=azure_client_params, timeout=timeout) # type: ignore
return response
if client is None:
client_session = litellm.client_session or httpx.Client(
transport=CustomHTTPTransport(),
img_gen_api_base = self.create_azure_base_url(
azure_client_params=azure_client_params, model=data.get("model", "")
)
azure_client = AzureOpenAI(http_client=client_session, **azure_client_params) # type: ignore
else:
azure_client = client
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=azure_client.api_key,
input=data["prompt"],
api_key=api_key,
additional_args={
"headers": {"api_key": azure_client.api_key},
"api_base": azure_client._base_url._uri_reference,
"acompletion": False,
"complete_input_dict": data,
"api_base": img_gen_api_base,
"headers": {"api_key": api_key},
},
)
httpx_response: httpx.Response = self.make_sync_azure_httpx_request(
client=None,
timeout=timeout,
api_base=img_gen_api_base,
api_version=api_version or "",
api_key=api_key or "",
data=data,
)
response = httpx_response.json()["result"]
## COMPLETION CALL
response = azure_client.images.generate(**data, timeout=timeout) # type: ignore
## LOGGING
logging_obj.post_call(
input=prompt,
@ -1158,7 +1441,7 @@ class AzureChatCompletion(BaseLLM):
original_response=response,
)
# return response
return convert_to_model_response_object(response_object=response.model_dump(), model_response_object=model_response, response_type="image_generation") # type: ignore
return convert_to_model_response_object(response_object=response, model_response_object=model_response, response_type="image_generation") # type: ignore
except AzureOpenAIError as e:
exception_mapping_worked = True
raise e

View file

@ -21,6 +21,7 @@ from pydantic import BaseModel
from typing_extensions import overload, override
import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.types.utils import ProviderField
from litellm.utils import (
Choices,
@ -652,6 +653,36 @@ class OpenAIChatCompletion(BaseLLM):
else:
return client
async def make_openai_chat_completion_request(
self,
openai_aclient: AsyncOpenAI,
data: dict,
timeout: Union[float, httpx.Timeout],
):
"""
Helper to:
- call chat.completions.create.with_raw_response when litellm.return_response_headers is True
- call chat.completions.create by default
"""
try:
if litellm.return_response_headers is True:
raw_response = (
await openai_aclient.chat.completions.with_raw_response.create(
**data, timeout=timeout
)
)
headers = dict(raw_response.headers)
response = raw_response.parse()
return headers, response
else:
response = await openai_aclient.chat.completions.create(
**data, timeout=timeout
)
return None, response
except Exception as e:
raise e
def completion(
self,
model_response: ModelResponse,
@ -836,13 +867,13 @@ class OpenAIChatCompletion(BaseLLM):
self,
data: dict,
model_response: ModelResponse,
logging_obj: LiteLLMLoggingObj,
timeout: Union[float, httpx.Timeout],
api_key: Optional[str] = None,
api_base: Optional[str] = None,
organization: Optional[str] = None,
client=None,
max_retries=None,
logging_obj=None,
headers=None,
):
response = None
@ -869,8 +900,8 @@ class OpenAIChatCompletion(BaseLLM):
},
)
response = await openai_aclient.chat.completions.create(
**data, timeout=timeout
headers, response = await self.make_openai_chat_completion_request(
openai_aclient=openai_aclient, data=data, timeout=timeout
)
stringified_response = response.model_dump()
logging_obj.post_call(
@ -879,9 +910,11 @@ class OpenAIChatCompletion(BaseLLM):
original_response=stringified_response,
additional_args={"complete_input_dict": data},
)
logging_obj.model_call_details["response_headers"] = headers
return convert_to_model_response_object(
response_object=stringified_response,
model_response_object=model_response,
hidden_params={"headers": headers},
)
except Exception as e:
raise e
@ -931,10 +964,10 @@ class OpenAIChatCompletion(BaseLLM):
async def async_streaming(
self,
logging_obj,
timeout: Union[float, httpx.Timeout],
data: dict,
model: str,
logging_obj: LiteLLMLoggingObj,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
organization: Optional[str] = None,
@ -965,9 +998,10 @@ class OpenAIChatCompletion(BaseLLM):
},
)
response = await openai_aclient.chat.completions.create(
**data, timeout=timeout
headers, response = await self.make_openai_chat_completion_request(
openai_aclient=openai_aclient, data=data, timeout=timeout
)
logging_obj.model_call_details["response_headers"] = headers
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,
@ -992,17 +1026,43 @@ class OpenAIChatCompletion(BaseLLM):
else:
raise OpenAIError(status_code=500, message=f"{str(e)}")
# Embedding
async def make_openai_embedding_request(
self,
openai_aclient: AsyncOpenAI,
data: dict,
timeout: Union[float, httpx.Timeout],
):
"""
Helper to:
- call embeddings.create.with_raw_response when litellm.return_response_headers is True
- call embeddings.create by default
"""
try:
if litellm.return_response_headers is True:
raw_response = await openai_aclient.embeddings.with_raw_response.create(
**data, timeout=timeout
) # type: ignore
headers = dict(raw_response.headers)
response = raw_response.parse()
return headers, response
else:
response = await openai_aclient.embeddings.create(**data, timeout=timeout) # type: ignore
return None, response
except Exception as e:
raise e
async def aembedding(
self,
input: list,
data: dict,
model_response: litellm.utils.EmbeddingResponse,
timeout: float,
logging_obj: LiteLLMLoggingObj,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
client: Optional[AsyncOpenAI] = None,
max_retries=None,
logging_obj=None,
):
response = None
try:
@ -1014,7 +1074,10 @@ class OpenAIChatCompletion(BaseLLM):
max_retries=max_retries,
client=client,
)
response = await openai_aclient.embeddings.create(**data, timeout=timeout) # type: ignore
headers, response = await self.make_openai_embedding_request(
openai_aclient=openai_aclient, data=data, timeout=timeout
)
logging_obj.model_call_details["response_headers"] = headers
stringified_response = response.model_dump()
## LOGGING
logging_obj.post_call(
@ -1229,6 +1292,34 @@ class OpenAIChatCompletion(BaseLLM):
else:
raise OpenAIError(status_code=500, message=str(e))
# Audio Transcriptions
async def make_openai_audio_transcriptions_request(
self,
openai_aclient: AsyncOpenAI,
data: dict,
timeout: Union[float, httpx.Timeout],
):
"""
Helper to:
- call openai_aclient.audio.transcriptions.with_raw_response when litellm.return_response_headers is True
- call openai_aclient.audio.transcriptions.create by default
"""
try:
if litellm.return_response_headers is True:
raw_response = (
await openai_aclient.audio.transcriptions.with_raw_response.create(
**data, timeout=timeout
)
) # type: ignore
headers = dict(raw_response.headers)
response = raw_response.parse()
return headers, response
else:
response = await openai_aclient.audio.transcriptions.create(**data, timeout=timeout) # type: ignore
return None, response
except Exception as e:
raise e
def audio_transcriptions(
self,
model: str,
@ -1286,11 +1377,11 @@ class OpenAIChatCompletion(BaseLLM):
data: dict,
model_response: TranscriptionResponse,
timeout: float,
logging_obj: LiteLLMLoggingObj,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
client=None,
max_retries=None,
logging_obj=None,
):
try:
openai_aclient = self._get_openai_client(
@ -1302,9 +1393,12 @@ class OpenAIChatCompletion(BaseLLM):
client=client,
)
response = await openai_aclient.audio.transcriptions.create(
**data, timeout=timeout
) # type: ignore
headers, response = await self.make_openai_audio_transcriptions_request(
openai_aclient=openai_aclient,
data=data,
timeout=timeout,
)
logging_obj.model_call_details["response_headers"] = headers
stringified_response = response.model_dump()
## LOGGING
logging_obj.post_call(
@ -1497,9 +1591,9 @@ class OpenAITextCompletion(BaseLLM):
model: str,
messages: list,
timeout: float,
logging_obj: LiteLLMLoggingObj,
print_verbose: Optional[Callable] = None,
api_base: Optional[str] = None,
logging_obj=None,
acompletion: bool = False,
optional_params=None,
litellm_params=None,

View file

@ -1035,6 +1035,9 @@ class VertexLLM(BaseLLM):
safety_settings: Optional[List[SafetSettingsConfig]] = optional_params.pop(
"safety_settings", None
) # type: ignore
cached_content: Optional[str] = optional_params.pop(
"cached_content", None
)
generation_config: Optional[GenerationConfig] = GenerationConfig(
**optional_params
)
@ -1050,6 +1053,8 @@ class VertexLLM(BaseLLM):
data["safetySettings"] = safety_settings
if generation_config is not None:
data["generationConfig"] = generation_config
if cached_content is not None:
data["cachedContent"] = cached_content
headers = {
"Content-Type": "application/json",

View file

@ -48,6 +48,7 @@ from litellm import ( # type: ignore
get_litellm_params,
get_optional_params,
)
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.utils import (
CustomStreamWrapper,
Usage,
@ -476,6 +477,15 @@ def mock_completion(
model=model, # type: ignore
request=httpx.Request(method="POST", url="https://api.openai.com/v1/"),
)
elif (
isinstance(mock_response, str) and mock_response == "litellm.RateLimitError"
):
raise litellm.RateLimitError(
message="this is a mock rate limit error",
status_code=getattr(mock_response, "status_code", 429), # type: ignore
llm_provider=getattr(mock_response, "llm_provider", custom_llm_provider or "openai"), # type: ignore
model=model,
)
time_delay = kwargs.get("mock_delay", None)
if time_delay is not None:
time.sleep(time_delay)
@ -2203,15 +2213,26 @@ def completion(
custom_prompt_dict = custom_prompt_dict or litellm.custom_prompt_dict
if "aws_bedrock_client" in optional_params:
verbose_logger.warning(
"'aws_bedrock_client' is a deprecated param. Please move to another auth method - https://docs.litellm.ai/docs/providers/bedrock#boto3---authentication."
)
# Extract credentials for legacy boto3 client and pass thru to httpx
aws_bedrock_client = optional_params.pop("aws_bedrock_client")
creds = aws_bedrock_client._get_credentials().get_frozen_credentials()
if creds.access_key:
optional_params["aws_access_key_id"] = creds.access_key
if creds.secret_key:
optional_params["aws_secret_access_key"] = creds.secret_key
if creds.token:
optional_params["aws_session_token"] = creds.token
if (
"aws_region_name" not in optional_params
or optional_params["aws_region_name"] is None
):
optional_params["aws_region_name"] = (
aws_bedrock_client.meta.region_name
)
if model in litellm.BEDROCK_CONVERSE_MODELS:
response = bedrock_converse_chat_completion.completion(
@ -4242,7 +4263,7 @@ def transcription(
api_base: Optional[str] = None,
api_version: Optional[str] = None,
max_retries: Optional[int] = None,
litellm_logging_obj=None,
litellm_logging_obj: Optional[LiteLLMLoggingObj] = None,
custom_llm_provider=None,
**kwargs,
):
@ -4257,6 +4278,18 @@ def transcription(
proxy_server_request = kwargs.get("proxy_server_request", None)
model_info = kwargs.get("model_info", None)
metadata = kwargs.get("metadata", {})
client: Optional[
Union[
openai.AsyncOpenAI,
openai.OpenAI,
openai.AzureOpenAI,
openai.AsyncAzureOpenAI,
]
] = kwargs.pop("client", None)
if litellm_logging_obj:
litellm_logging_obj.model_call_details["client"] = str(client)
if max_retries is None:
max_retries = openai.DEFAULT_MAX_RETRIES
@ -4296,6 +4329,7 @@ def transcription(
optional_params=optional_params,
model_response=model_response,
atranscription=atranscription,
client=client,
timeout=timeout,
logging_obj=litellm_logging_obj,
api_base=api_base,
@ -4329,6 +4363,7 @@ def transcription(
optional_params=optional_params,
model_response=model_response,
atranscription=atranscription,
client=client,
timeout=timeout,
logging_obj=litellm_logging_obj,
max_retries=max_retries,

View file

@ -1,16 +1,9 @@
model_list:
- model_name: gpt-3.5-turbo # all requests where model not in your config go to this deployment
- model_name: claude-3-5-sonnet # all requests where model not in your config go to this deployment
litellm_params:
model: "gpt-3.5-turbo"
rpm: 100
model: "openai/*"
mock_response: "Hello world!"
litellm_settings:
callbacks: ["dynamic_rate_limiter"]
priority_reservation: {"dev": 0, "prod": 1}
# success_callback: ["s3"]
# s3_callback_params:
# s3_bucket_name: my-test-bucket-22-litellm # AWS Bucket Name for S3
# s3_region_name: us-west-2 # AWS Region Name for S3
# s3_aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID # us os.environ/<variable name> to pass environment variables. This is AWS Access Key ID for S3
# s3_aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY # AWS Secret Access Key for S3
# s3_path: my-test-path
general_settings:
alerting: ["slack"]
alerting_threshold: 10

View file

@ -36,6 +36,7 @@ general_settings:
LANGFUSE_SECRET_KEY: "os.environ/LANGFUSE_DEV_SK_KEY"
litellm_settings:
return_response_headers: true
success_callback: ["prometheus"]
callbacks: ["otel", "hide_secrets"]
failure_callback: ["prometheus"]

View file

@ -1182,9 +1182,13 @@ async def _run_background_health_check():
Update health_check_results, based on this.
"""
global health_check_results, llm_model_list, health_check_interval
# make 1 deep copy of llm_model_list -> use this for all background health checks
_llm_model_list = copy.deepcopy(llm_model_list)
while True:
healthy_endpoints, unhealthy_endpoints = await perform_health_check(
model_list=llm_model_list
model_list=_llm_model_list
)
# Update the global variable with the health check results
@ -3066,8 +3070,11 @@ async def chat_completion(
# Post Call Processing
if llm_router is not None:
data["deployment"] = llm_router.get_deployment(model_id=model_id)
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
if (
"stream" in data and data["stream"] == True
): # use generate_responses to stream responses
@ -3117,7 +3124,6 @@ async def chat_completion(
return response
except RejectedRequestError as e:
_data = e.request_data
_data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict,
original_exception=e,
@ -3150,7 +3156,6 @@ async def chat_completion(
_chat_response.usage = _usage # type: ignore
return _chat_response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
verbose_proxy_logger.error(
"litellm.proxy.proxy_server.chat_completion(): Exception occured - {}\n{}".format(
get_error_message_str(e=e), traceback.format_exc()
@ -3306,7 +3311,11 @@ async def completion(
response_cost = hidden_params.get("response_cost", None) or ""
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
verbose_proxy_logger.debug("final response: %s", response)
if (
@ -3345,7 +3354,6 @@ async def completion(
return response
except RejectedRequestError as e:
_data = e.request_data
_data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict,
original_exception=e,
@ -3384,7 +3392,6 @@ async def completion(
_response.choices[0].text = e.message
return _response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
@ -3536,7 +3543,11 @@ async def embeddings(
)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
@ -3559,7 +3570,6 @@ async def embeddings(
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
@ -3687,8 +3697,11 @@ async def image_generation(
)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
@ -3710,7 +3723,6 @@ async def image_generation(
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
@ -3825,7 +3837,11 @@ async def audio_speech(
)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
@ -3991,7 +4007,11 @@ async def audio_transcriptions(
os.remove(file.filename) # Delete the saved file
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
@ -4014,7 +4034,6 @@ async def audio_transcriptions(
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
@ -4093,7 +4112,11 @@ async def get_assistants(
response = await llm_router.aget_assistants(**data)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
@ -4114,7 +4137,6 @@ async def get_assistants(
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
@ -4185,7 +4207,11 @@ async def create_threads(
response = await llm_router.acreate_thread(**data)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
@ -4206,7 +4232,6 @@ async def create_threads(
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
@ -4276,7 +4301,11 @@ async def get_thread(
response = await llm_router.aget_thread(thread_id=thread_id, **data)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
@ -4297,7 +4326,6 @@ async def get_thread(
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
@ -4370,7 +4398,11 @@ async def add_messages(
response = await llm_router.a_add_message(thread_id=thread_id, **data)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
@ -4391,7 +4423,6 @@ async def add_messages(
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
@ -4460,7 +4491,11 @@ async def get_messages(
response = await llm_router.aget_messages(thread_id=thread_id, **data)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
@ -4481,7 +4516,6 @@ async def get_messages(
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
@ -4564,7 +4598,11 @@ async def run_thread(
)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
@ -4585,7 +4623,6 @@ async def run_thread(
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
@ -4675,7 +4712,11 @@ async def create_batch(
)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
@ -4696,7 +4737,6 @@ async def create_batch(
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
@ -4781,7 +4821,11 @@ async def retrieve_batch(
)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
@ -4802,7 +4846,6 @@ async def retrieve_batch(
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
@ -4897,7 +4940,11 @@ async def create_file(
)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
@ -4918,7 +4965,6 @@ async def create_file(
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
@ -5041,7 +5087,11 @@ async def moderations(
response = await litellm.amoderation(**data)
### ALERTING ###
data["litellm_status"] = "success" # used for alerting
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
@ -5062,7 +5112,6 @@ async def moderations(
return response
except Exception as e:
data["litellm_status"] = "fail" # used for alerting
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)

View file

@ -153,7 +153,7 @@ def decrypt_env_var() -> Dict[str, Any]:
) or (v is not None and isinstance(v, str) and v.startswith("aws_kms/")):
decrypted_value = aws_kms.decrypt_value(secret_name=k)
# reset env var
k = re.sub("litellm_secret_aws_kms", "", k, flags=re.IGNORECASE)
k = re.sub("litellm_secret_aws_kms_", "", k, flags=re.IGNORECASE)
new_values[k] = decrypted_value
return new_values

View file

@ -272,6 +272,16 @@ class ProxyLogging:
callback_list=callback_list
)
async def update_request_status(
self, litellm_call_id: str, status: Literal["success", "fail"]
):
await self.internal_usage_cache.async_set_cache(
key="request_status:{}".format(litellm_call_id),
value=status,
local_only=True,
ttl=3600,
)
# The actual implementation of the function
async def pre_call_hook(
self,
@ -560,6 +570,9 @@ class ProxyLogging:
"""
### ALERTING ###
await self.update_request_status(
litellm_call_id=request_data.get("litellm_call_id", ""), status="fail"
)
if "llm_exceptions" in self.alert_types and not isinstance(
original_exception, HTTPException
):
@ -611,6 +624,7 @@ class ProxyLogging:
Covers:
1. /chat/completions
"""
for callback in litellm.callbacks:
try:
_callback: Optional[CustomLogger] = None

View file

@ -156,6 +156,7 @@ class Router:
cooldown_time: Optional[
float
] = None, # (seconds) time to cooldown a deployment after failure
disable_cooldowns: Optional[bool] = None,
routing_strategy: Literal[
"simple-shuffle",
"least-busy",
@ -307,6 +308,7 @@ class Router:
self.allowed_fails = allowed_fails or litellm.allowed_fails
self.cooldown_time = cooldown_time or 60
self.disable_cooldowns = disable_cooldowns
self.failed_calls = (
InMemoryCache()
) # cache to track failed call per deployment, if num failed calls within 1 minute > allowed fails, then add it to cooldown
@ -2990,6 +2992,8 @@ class Router:
the exception is not one that should be immediately retried (e.g. 401)
"""
if self.disable_cooldowns is True:
return
if deployment is None:
return
@ -3030,24 +3034,50 @@ class Router:
exception_status = 500
_should_retry = litellm._should_retry(status_code=exception_status)
if updated_fails > allowed_fails or _should_retry == False:
if updated_fails > allowed_fails or _should_retry is False:
# get the current cooldown list for that minute
cooldown_key = f"{current_minute}:cooldown_models" # group cooldown models by minute to reduce number of redis calls
cached_value = self.cache.get_cache(key=cooldown_key)
cached_value = self.cache.get_cache(
key=cooldown_key
) # [(deployment_id, {last_error_str, last_error_status_code})]
cached_value_deployment_ids = []
if (
cached_value is not None
and isinstance(cached_value, list)
and len(cached_value) > 0
and isinstance(cached_value[0], tuple)
):
cached_value_deployment_ids = [cv[0] for cv in cached_value]
verbose_router_logger.debug(f"adding {deployment} to cooldown models")
# update value
try:
if deployment in cached_value:
if cached_value is not None and len(cached_value_deployment_ids) > 0:
if deployment in cached_value_deployment_ids:
pass
else:
cached_value = cached_value + [deployment]
cached_value = cached_value + [
(
deployment,
{
"Exception Received": str(original_exception),
"Status Code": str(exception_status),
},
)
]
# save updated value
self.cache.set_cache(
value=cached_value, key=cooldown_key, ttl=cooldown_time
)
except:
cached_value = [deployment]
else:
cached_value = [
(
deployment,
{
"Exception Received": str(original_exception),
"Status Code": str(exception_status),
},
)
]
# save updated value
self.cache.set_cache(
value=cached_value, key=cooldown_key, ttl=cooldown_time
@ -3063,7 +3093,33 @@ class Router:
key=deployment, value=updated_fails, ttl=cooldown_time
)
async def _async_get_cooldown_deployments(self):
async def _async_get_cooldown_deployments(self) -> List[str]:
"""
Async implementation of '_get_cooldown_deployments'
"""
dt = get_utc_datetime()
current_minute = dt.strftime("%H-%M")
# get the current cooldown list for that minute
cooldown_key = f"{current_minute}:cooldown_models"
# ----------------------
# Return cooldown models
# ----------------------
cooldown_models = await self.cache.async_get_cache(key=cooldown_key) or []
cached_value_deployment_ids = []
if (
cooldown_models is not None
and isinstance(cooldown_models, list)
and len(cooldown_models) > 0
and isinstance(cooldown_models[0], tuple)
):
cached_value_deployment_ids = [cv[0] for cv in cooldown_models]
verbose_router_logger.debug(f"retrieve cooldown models: {cooldown_models}")
return cached_value_deployment_ids
async def _async_get_cooldown_deployments_with_debug_info(self) -> List[tuple]:
"""
Async implementation of '_get_cooldown_deployments'
"""
@ -3080,7 +3136,7 @@ class Router:
verbose_router_logger.debug(f"retrieve cooldown models: {cooldown_models}")
return cooldown_models
def _get_cooldown_deployments(self):
def _get_cooldown_deployments(self) -> List[str]:
"""
Get the list of models being cooled down for this minute
"""
@ -3094,8 +3150,17 @@ class Router:
# ----------------------
cooldown_models = self.cache.get_cache(key=cooldown_key) or []
cached_value_deployment_ids = []
if (
cooldown_models is not None
and isinstance(cooldown_models, list)
and len(cooldown_models) > 0
and isinstance(cooldown_models[0], tuple)
):
cached_value_deployment_ids = [cv[0] for cv in cooldown_models]
verbose_router_logger.debug(f"retrieve cooldown models: {cooldown_models}")
return cooldown_models
return cached_value_deployment_ids
def _get_healthy_deployments(self, model: str):
_all_deployments: list = []
@ -4737,7 +4802,7 @@ class Router:
if _allowed_model_region is None:
_allowed_model_region = "n/a"
raise ValueError(
f"{RouterErrors.no_deployments_available.value}, Try again in {self.cooldown_time} seconds. Passed model={model}. pre-call-checks={self.enable_pre_call_checks}, allowed_model_region={_allowed_model_region}"
f"{RouterErrors.no_deployments_available.value}, Try again in {self.cooldown_time} seconds. Passed model={model}. pre-call-checks={self.enable_pre_call_checks}, allowed_model_region={_allowed_model_region}, cooldown_list={await self._async_get_cooldown_deployments_with_debug_info()}"
)
if (

View file

@ -856,3 +856,56 @@ async def test_bedrock_custom_prompt_template():
prompt = json.loads(mock_client_post.call_args.kwargs["data"])["prompt"]
assert prompt == "<|im_start|>user\nWhat's AWS?<|im_end|>"
mock_client_post.assert_called_once()
def test_completion_bedrock_external_client_region():
print("\ncalling bedrock claude external client auth")
import os
aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
aws_region_name = "us-east-1"
os.environ.pop("AWS_ACCESS_KEY_ID", None)
os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
client = HTTPHandler()
try:
import boto3
litellm.set_verbose = True
bedrock = boto3.client(
service_name="bedrock-runtime",
region_name=aws_region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
endpoint_url=f"https://bedrock-runtime.{aws_region_name}.amazonaws.com",
)
with patch.object(client, "post", new=Mock()) as mock_client_post:
try:
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_bedrock_client=bedrock,
client=client,
)
# Add any assertions here to check the response
print(response)
except Exception as e:
pass
print(f"mock_client_post.call_args: {mock_client_post.call_args}")
assert "us-east-1" in mock_client_post.call_args.kwargs["url"]
mock_client_post.assert_called_once()
os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")

View file

@ -249,6 +249,25 @@ def test_completion_azure_exception():
# test_completion_azure_exception()
def test_azure_embedding_exceptions():
try:
response = litellm.embedding(
model="azure/azure-embedding-model",
input="hello",
messages="hello",
)
pytest.fail(f"Bad request this should have failed but got {response}")
except Exception as e:
print(vars(e))
# CRUCIAL Test - Ensures our exceptions are readable and not overly complicated. some users have complained exceptions will randomly have another exception raised in our exception mapping
assert (
e.message
== "litellm.APIError: AzureException APIError - Embeddings.create() got an unexpected keyword argument 'messages'"
)
async def asynctest_completion_azure_exception():
try:
import openai

View file

@ -1,20 +1,23 @@
# What this tests?
## This tests the litellm support for the openai /generations endpoint
import sys, os
import traceback
from dotenv import load_dotenv
import logging
import os
import sys
import traceback
from dotenv import load_dotenv
logging.basicConfig(level=logging.DEBUG)
load_dotenv()
import os
import asyncio
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
@ -39,13 +42,25 @@ def test_image_generation_openai():
# test_image_generation_openai()
def test_image_generation_azure():
@pytest.mark.parametrize(
"sync_mode",
[True, False],
) #
@pytest.mark.asyncio
async def test_image_generation_azure(sync_mode):
try:
if sync_mode:
response = litellm.image_generation(
prompt="A cute baby sea otter",
model="azure/",
api_version="2023-06-01-preview",
)
else:
response = await litellm.aimage_generation(
prompt="A cute baby sea otter",
model="azure/",
api_version="2023-06-01-preview",
)
print(f"response: {response}")
assert len(response.data) > 0
except litellm.RateLimitError as e:

View file

@ -155,6 +155,16 @@ class ToolConfig(TypedDict):
functionCallingConfig: FunctionCallingConfig
class TTL(TypedDict, total=False):
seconds: Required[float]
nano: float
class CachedContent(TypedDict, total=False):
ttl: TTL
expire_time: str
class RequestBody(TypedDict, total=False):
contents: Required[List[ContentType]]
system_instruction: SystemInstructions
@ -162,6 +172,7 @@ class RequestBody(TypedDict, total=False):
toolConfig: ToolConfig
safetySettings: List[SafetSettingsConfig]
generationConfig: GenerationConfig
cachedContent: str
class SafetyRatings(TypedDict):

View file

@ -4815,6 +4815,12 @@ def function_to_dict(input_function): # noqa: C901
return result
def modify_url(original_url, new_path):
url = httpx.URL(original_url)
modified_url = url.copy_with(path=new_path)
return str(modified_url)
def load_test_model(
model: str,
custom_llm_provider: str = "",
@ -5810,6 +5816,18 @@ def exception_type(
_model_group = _metadata.get("model_group")
_deployment = _metadata.get("deployment")
extra_information = f"\nModel: {model}"
exception_provider = "Unknown"
if (
isinstance(custom_llm_provider, str)
and len(custom_llm_provider) > 0
):
exception_provider = (
custom_llm_provider[0].upper()
+ custom_llm_provider[1:]
+ "Exception"
)
if _api_base:
extra_information += f"\nAPI Base: `{_api_base}`"
if (

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "1.41.2"
version = "1.41.3"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT"
@ -90,7 +90,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api"
[tool.commitizen]
version = "1.41.2"
version = "1.41.3"
version_files = [
"pyproject.toml:^version"
]

View file

@ -8,6 +8,9 @@ from openai import AsyncOpenAI
import sys, os, dotenv
from typing import Optional
from dotenv import load_dotenv
from litellm.integrations.custom_logger import CustomLogger
import litellm
import logging
# Get the current directory of the file being run
pwd = os.path.dirname(os.path.realpath(__file__))
@ -84,9 +87,32 @@ async def test_transcription_async_openai():
assert isinstance(transcript.text, str)
# This file includes the custom callbacks for LiteLLM Proxy
# Once defined, these can be passed in proxy_config.yaml
class MyCustomHandler(CustomLogger):
def __init__(self):
self.openai_client = None
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
try:
# init logging config
print("logging a transcript kwargs: ", kwargs)
print("openai client=", kwargs.get("client"))
self.openai_client = kwargs.get("client")
except:
pass
proxy_handler_instance = MyCustomHandler()
# Set litellm.callbacks = [proxy_handler_instance] on the proxy
# need to set litellm.callbacks = [proxy_handler_instance] # on the proxy
@pytest.mark.asyncio
async def test_transcription_on_router():
litellm.set_verbose = True
litellm.callbacks = [proxy_handler_instance]
print("\n Testing async transcription on router\n")
try:
model_list = [
@ -108,11 +134,29 @@ async def test_transcription_on_router():
]
router = Router(model_list=model_list)
router_level_clients = []
for deployment in router.model_list:
_deployment_openai_client = router._get_client(
deployment=deployment,
kwargs={"model": "whisper-1"},
client_type="async",
)
router_level_clients.append(str(_deployment_openai_client))
response = await router.atranscription(
model="whisper",
file=audio_file,
)
print(response)
# PROD Test
# Ensure we ONLY use OpenAI/Azure client initialized on the router level
await asyncio.sleep(5)
print("OpenAI Client used= ", proxy_handler_instance.openai_client)
print("all router level clients= ", router_level_clients)
assert proxy_handler_instance.openai_client in router_level_clients
except Exception as e:
traceback.print_exc()
pytest.fail(f"Error occurred: {e}")