Merge pull request #3393 from Priva28/main

Add Llama3 tokenizer and allow custom tokenizers.
This commit is contained in:
Krish Dholakia 2024-05-02 16:32:41 -07:00 committed by GitHub
commit 2200900ca2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 98 additions and 24 deletions

View file

@ -1,7 +1,7 @@
# Completion Token Usage & Cost # Completion Token Usage & Cost
By default LiteLLM returns token usage in all completion requests ([See here](https://litellm.readthedocs.io/en/latest/output/)) By default LiteLLM returns token usage in all completion requests ([See here](https://litellm.readthedocs.io/en/latest/output/))
However, we also expose 5 helper functions + **[NEW]** an API to calculate token usage across providers: However, we also expose some helper functions + **[NEW]** an API to calculate token usage across providers:
- `encode`: This encodes the text passed in, using the model-specific tokenizer. [**Jump to code**](#1-encode) - `encode`: This encodes the text passed in, using the model-specific tokenizer. [**Jump to code**](#1-encode)
@ -9,17 +9,19 @@ However, we also expose 5 helper functions + **[NEW]** an API to calculate token
- `token_counter`: This returns the number of tokens for a given input - it uses the tokenizer based on the model, and defaults to tiktoken if no model-specific tokenizer is available. [**Jump to code**](#3-token_counter) - `token_counter`: This returns the number of tokens for a given input - it uses the tokenizer based on the model, and defaults to tiktoken if no model-specific tokenizer is available. [**Jump to code**](#3-token_counter)
- `cost_per_token`: This returns the cost (in USD) for prompt (input) and completion (output) tokens. Uses the live list from `api.litellm.ai`. [**Jump to code**](#4-cost_per_token) - `create_pretrained_tokenizer` and `create_tokenizer`: LiteLLM provides default tokenizer support for OpenAI, Cohere, Anthropic, Llama2, and Llama3 models. If you are using a different model, you can create a custom tokenizer and pass it as `custom_tokenizer` to the `encode`, `decode`, and `token_counter` methods. [**Jump to code**](#4-create_pretrained_tokenizer-and-create_tokenizer)
- `completion_cost`: This returns the overall cost (in USD) for a given LLM API Call. It combines `token_counter` and `cost_per_token` to return the cost for that query (counting both cost of input and output). [**Jump to code**](#5-completion_cost) - `cost_per_token`: This returns the cost (in USD) for prompt (input) and completion (output) tokens. Uses the live list from `api.litellm.ai`. [**Jump to code**](#5-cost_per_token)
- `get_max_tokens`: This returns the maximum number of tokens allowed for the given model. [**Jump to code**](#6-get_max_tokens) - `completion_cost`: This returns the overall cost (in USD) for a given LLM API Call. It combines `token_counter` and `cost_per_token` to return the cost for that query (counting both cost of input and output). [**Jump to code**](#6-completion_cost)
- `model_cost`: This returns a dictionary for all models, with their max_tokens, input_cost_per_token and output_cost_per_token. It uses the `api.litellm.ai` call shown below. [**Jump to code**](#7-model_cost) - `get_max_tokens`: This returns the maximum number of tokens allowed for the given model. [**Jump to code**](#7-get_max_tokens)
- `register_model`: This registers new / overrides existing models (and their pricing details) in the model cost dictionary. [**Jump to code**](#8-register_model) - `model_cost`: This returns a dictionary for all models, with their max_tokens, input_cost_per_token and output_cost_per_token. It uses the `api.litellm.ai` call shown below. [**Jump to code**](#8-model_cost)
- `api.litellm.ai`: Live token + price count across [all supported models](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json). [**Jump to code**](#9-apilitellmai) - `register_model`: This registers new / overrides existing models (and their pricing details) in the model cost dictionary. [**Jump to code**](#9-register_model)
- `api.litellm.ai`: Live token + price count across [all supported models](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json). [**Jump to code**](#10-apilitellmai)
📣 This is a community maintained list. Contributions are welcome! ❤️ 📣 This is a community maintained list. Contributions are welcome! ❤️
@ -60,7 +62,24 @@ messages = [{"user": "role", "content": "Hey, how's it going"}]
print(token_counter(model="gpt-3.5-turbo", messages=messages)) print(token_counter(model="gpt-3.5-turbo", messages=messages))
``` ```
### 4. `cost_per_token` ### 4. `create_pretrained_tokenizer` and `create_tokenizer`
```python
from litellm import create_pretrained_tokenizer, create_tokenizer
# get tokenizer from huggingface repo
custom_tokenizer_1 = create_pretrained_tokenizer("Xenova/llama-3-tokenizer")
# use tokenizer from json file
with open("tokenizer.json") as f:
json_data = json.load(f)
json_str = json.dumps(json_data)
custom_tokenizer_2 = create_tokenizer(json_str)
```
### 5. `cost_per_token`
```python ```python
from litellm import cost_per_token from litellm import cost_per_token
@ -72,7 +91,7 @@ prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_toke
print(prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar) print(prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar)
``` ```
### 5. `completion_cost` ### 6. `completion_cost`
* Input: Accepts a `litellm.completion()` response **OR** prompt + completion strings * Input: Accepts a `litellm.completion()` response **OR** prompt + completion strings
* Output: Returns a `float` of cost for the `completion` call * Output: Returns a `float` of cost for the `completion` call
@ -99,7 +118,7 @@ cost = completion_cost(model="bedrock/anthropic.claude-v2", prompt="Hey!", compl
formatted_string = f"${float(cost):.10f}" formatted_string = f"${float(cost):.10f}"
print(formatted_string) print(formatted_string)
``` ```
### 6. `get_max_tokens` ### 7. `get_max_tokens`
Input: Accepts a model name - e.g., gpt-3.5-turbo (to get a complete list, call litellm.model_list). Input: Accepts a model name - e.g., gpt-3.5-turbo (to get a complete list, call litellm.model_list).
Output: Returns the maximum number of tokens allowed for the given model Output: Returns the maximum number of tokens allowed for the given model
@ -112,7 +131,7 @@ model = "gpt-3.5-turbo"
print(get_max_tokens(model)) # Output: 4097 print(get_max_tokens(model)) # Output: 4097
``` ```
### 7. `model_cost` ### 8. `model_cost`
* Output: Returns a dict object containing the max_tokens, input_cost_per_token, output_cost_per_token for all models on [community-maintained list](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json) * Output: Returns a dict object containing the max_tokens, input_cost_per_token, output_cost_per_token for all models on [community-maintained list](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json)
@ -122,7 +141,7 @@ from litellm import model_cost
print(model_cost) # {'gpt-3.5-turbo': {'max_tokens': 4000, 'input_cost_per_token': 1.5e-06, 'output_cost_per_token': 2e-06}, ...} print(model_cost) # {'gpt-3.5-turbo': {'max_tokens': 4000, 'input_cost_per_token': 1.5e-06, 'output_cost_per_token': 2e-06}, ...}
``` ```
### 8. `register_model` ### 9. `register_model`
* Input: Provide EITHER a model cost dictionary or a url to a hosted json blob * Input: Provide EITHER a model cost dictionary or a url to a hosted json blob
* Output: Returns updated model_cost dictionary + updates litellm.model_cost with model details. * Output: Returns updated model_cost dictionary + updates litellm.model_cost with model details.
@ -157,5 +176,3 @@ export LITELLM_LOCAL_MODEL_COST_MAP="True"
``` ```
Note: this means you will need to upgrade to get updated pricing, and newer models. Note: this means you will need to upgrade to get updated pricing, and newer models.

View file

@ -613,6 +613,8 @@ from .utils import (
get_optional_params, get_optional_params,
modify_integration, modify_integration,
token_counter, token_counter,
create_pretrained_tokenizer,
create_tokenizer,
cost_per_token, cost_per_token,
completion_cost, completion_cost,
supports_function_calling, supports_function_calling,

View file

@ -34,6 +34,8 @@ from litellm.utils import (
async_mock_completion_streaming_obj, async_mock_completion_streaming_obj,
convert_to_model_response_object, convert_to_model_response_object,
token_counter, token_counter,
create_pretrained_tokenizer,
create_tokenizer,
Usage, Usage,
get_optional_params_embeddings, get_optional_params_embeddings,
get_optional_params_image_gen, get_optional_params_image_gen,

View file

@ -9,7 +9,7 @@ sys.path.insert(
0, os.path.abspath("../..") 0, os.path.abspath("../..")
) # Adds the parent directory to the system path ) # Adds the parent directory to the system path
import time import time
from litellm import token_counter, encode, decode from litellm import token_counter, create_pretrained_tokenizer, encode, decode
def test_token_counter_normal_plus_function_calling(): def test_token_counter_normal_plus_function_calling():
@ -69,15 +69,23 @@ def test_tokenizers():
model="meta-llama/Llama-2-7b-chat", text=sample_text model="meta-llama/Llama-2-7b-chat", text=sample_text
) )
# llama3 tokenizer (also testing custom tokenizer)
llama3_tokens_1 = token_counter(model="meta-llama/llama-3-70b-instruct", text=sample_text)
llama3_tokenizer = create_pretrained_tokenizer("Xenova/llama-3-tokenizer")
llama3_tokens_2 = token_counter(custom_tokenizer=llama3_tokenizer, text=sample_text)
print( print(
f"openai tokens: {openai_tokens}; claude tokens: {claude_tokens}; cohere tokens: {cohere_tokens}; llama2 tokens: {llama2_tokens}" f"openai tokens: {openai_tokens}; claude tokens: {claude_tokens}; cohere tokens: {cohere_tokens}; llama2 tokens: {llama2_tokens}; llama3 tokens: {llama3_tokens_1}"
) )
# assert that all token values are different # assert that all token values are different
assert ( assert (
openai_tokens != cohere_tokens != llama2_tokens openai_tokens != cohere_tokens != llama2_tokens != llama3_tokens_1
), "Token values are not different." ), "Token values are not different."
assert llama3_tokens_1 == llama3_tokens_2, "Custom tokenizer is not being used! It has been configured to use the same tokenizer as the built in llama3 tokenizer and the results should be the same."
print("test tokenizer: It worked!") print("test tokenizer: It worked!")
except Exception as e: except Exception as e:
pytest.fail(f"An exception occured: {e}") pytest.fail(f"An exception occured: {e}")

View file

@ -20,6 +20,8 @@ from litellm.utils import (
validate_environment, validate_environment,
function_to_dict, function_to_dict,
token_counter, token_counter,
create_pretrained_tokenizer,
create_tokenizer,
) )
# Assuming your trim_messages, shorten_message_to_fit_limit, and get_token_count functions are all in a module named 'message_utils' # Assuming your trim_messages, shorten_message_to_fit_limit, and get_token_count functions are all in a module named 'message_utils'

View file

@ -3775,29 +3775,34 @@ def _select_tokenizer(model: str):
elif "llama-2" in model.lower() or "replicate" in model.lower(): elif "llama-2" in model.lower() or "replicate" in model.lower():
tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer} return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
# llama3
elif "llama-3" in model.lower():
tokenizer = Tokenizer.from_pretrained("Xenova/llama-3-tokenizer")
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
# default - tiktoken # default - tiktoken
else: else:
return {"type": "openai_tokenizer", "tokenizer": encoding} return {"type": "openai_tokenizer", "tokenizer": encoding}
def encode(model: str, text: str): def encode(model="", text="", custom_tokenizer: Optional[dict] = None):
""" """
Encodes the given text using the specified model. Encodes the given text using the specified model.
Args: Args:
model (str): The name of the model to use for tokenization. model (str): The name of the model to use for tokenization.
custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
text (str): The text to be encoded. text (str): The text to be encoded.
Returns: Returns:
enc: The encoded text. enc: The encoded text.
""" """
tokenizer_json = _select_tokenizer(model=model) tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
enc = tokenizer_json["tokenizer"].encode(text) enc = tokenizer_json["tokenizer"].encode(text)
return enc return enc
def decode(model: str, tokens: List[int]): def decode(model="", tokens: List[int] = [], custom_tokenizer: Optional[dict] = None):
tokenizer_json = _select_tokenizer(model=model) tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
dec = tokenizer_json["tokenizer"].decode(tokens) dec = tokenizer_json["tokenizer"].decode(tokens)
return dec return dec
@ -3971,8 +3976,45 @@ def calculage_img_tokens(
return total_tokens return total_tokens
def create_pretrained_tokenizer(
identifier: str,
revision="main",
auth_token: Optional[str] = None
):
"""
Creates a tokenizer from an existing file on a HuggingFace repository to be used with `token_counter`.
Args:
identifier (str): The identifier of a Model on the Hugging Face Hub, that contains a tokenizer.json file
revision (str, defaults to main): A branch or commit id
auth_token (str, optional, defaults to None): An optional auth token used to access private repositories on the Hugging Face Hub
Returns:
dict: A dictionary with the tokenizer and its type.
"""
tokenizer = Tokenizer.from_pretrained(identifier, revision=revision, auth_token=auth_token)
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
def create_tokenizer(json: str):
"""
Creates a tokenizer from a valid JSON string for use with `token_counter`.
Args:
json (str): A valid JSON string representing a previously serialized tokenizer
Returns:
dict: A dictionary with the tokenizer and its type.
"""
tokenizer = Tokenizer.from_str(json)
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
def token_counter( def token_counter(
model="", model="",
custom_tokenizer: Optional[dict] = None,
text: Optional[Union[str, List[str]]] = None, text: Optional[Union[str, List[str]]] = None,
messages: Optional[List] = None, messages: Optional[List] = None,
count_response_tokens: Optional[bool] = False, count_response_tokens: Optional[bool] = False,
@ -3982,13 +4024,14 @@ def token_counter(
Args: Args:
model (str): The name of the model to use for tokenization. Default is an empty string. model (str): The name of the model to use for tokenization. Default is an empty string.
custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None.
text (str): The raw text string to be passed to the model. Default is None. text (str): The raw text string to be passed to the model. Default is None.
messages (Optional[List[Dict[str, str]]]): Alternative to passing in text. A list of dictionaries representing messages with "role" and "content" keys. Default is None. messages (Optional[List[Dict[str, str]]]): Alternative to passing in text. A list of dictionaries representing messages with "role" and "content" keys. Default is None.
Returns: Returns:
int: The number of tokens in the text. int: The number of tokens in the text.
""" """
# use tiktoken, anthropic, cohere or llama2's tokenizer depending on the model # use tiktoken, anthropic, cohere, llama2, or llama3's tokenizer depending on the model
is_tool_call = False is_tool_call = False
num_tokens = 0 num_tokens = 0
if text == None: if text == None:
@ -4030,8 +4073,8 @@ def token_counter(
elif isinstance(text, str): elif isinstance(text, str):
count_response_tokens = True # user just trying to count tokens for a text. don't add the chat_ml +3 tokens to this count_response_tokens = True # user just trying to count tokens for a text. don't add the chat_ml +3 tokens to this
if model is not None: if model is not None or custom_tokenizer is not None:
tokenizer_json = _select_tokenizer(model=model) tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
if tokenizer_json["type"] == "huggingface_tokenizer": if tokenizer_json["type"] == "huggingface_tokenizer":
print_verbose( print_verbose(
f"Token Counter - using hugging face token counter, for model={model}" f"Token Counter - using hugging face token counter, for model={model}"