forked from phoenix/litellm-mirror
LiteLLM Minor Fixes & Improvements (11/01/2024) (#6551)
* fix: add lm_studio support * fix(cohere_transformation.py): fix transformation logic for azure cohere embedding model name Fixes https://github.com/BerriAI/litellm/issues/6540 * fix(utils.py): require base64 str to begin with `data:` Fixes https://github.com/BerriAI/litellm/issues/6541 * fix: cleanup tests * docs(guardrails.md): fix typo * fix(opentelemetry.py): move to `.exception` and update 'response_obj' value to handle 'None' case Fixes https://github.com/BerriAI/litellm/issues/6510 * fix: fix linting noqa placement
This commit is contained in:
parent
bac2ac2a49
commit
22b8f93f53
12 changed files with 123 additions and 17 deletions
|
@ -349,7 +349,7 @@ litellm_settings:
|
|||
callbacks: [hide_secrets]
|
||||
default_on: true
|
||||
- pii_masking:
|
||||
callback: ["presidio"]
|
||||
callbacks: ["presidio"]
|
||||
default_on: true
|
||||
logging_only: true
|
||||
- your-custom-guardrail
|
||||
|
|
|
@ -517,6 +517,7 @@ openai_compatible_providers: List = [
|
|||
"github",
|
||||
"litellm_proxy",
|
||||
"hosted_vllm",
|
||||
"lm_studio",
|
||||
]
|
||||
openai_text_completion_compatible_providers: List = (
|
||||
[ # providers that support `/v1/completions`
|
||||
|
@ -776,6 +777,7 @@ class LlmProviders(str, Enum):
|
|||
CUSTOM = "custom"
|
||||
LITELLM_PROXY = "litellm_proxy"
|
||||
HOSTED_VLLM = "hosted_vllm"
|
||||
LM_STUDIO = "lm_studio"
|
||||
|
||||
|
||||
provider_list: List[Union[LlmProviders, str]] = list(LlmProviders)
|
||||
|
@ -1034,6 +1036,7 @@ from .llms.AzureOpenAI.azure import (
|
|||
|
||||
from .llms.AzureOpenAI.chat.gpt_transformation import AzureOpenAIConfig
|
||||
from .llms.hosted_vllm.chat.transformation import HostedVLLMChatConfig
|
||||
from .llms.lm_studio.chat.transformation import LMStudioChatConfig
|
||||
from .llms.perplexity.chat.transformation import PerplexityChatConfig
|
||||
from .llms.AzureOpenAI.chat.o1_transformation import AzureOpenAIO1Config
|
||||
from .llms.watsonx import IBMWatsonXAIConfig
|
||||
|
|
|
@ -413,7 +413,9 @@ class OpenTelemetry(CustomLogger):
|
|||
except Exception:
|
||||
return ""
|
||||
|
||||
def set_attributes(self, span: Span, kwargs, response_obj): # noqa: PLR0915
|
||||
def set_attributes( # noqa: PLR0915
|
||||
self, span: Span, kwargs, response_obj: Optional[Any]
|
||||
):
|
||||
try:
|
||||
if self.callback_name == "arize":
|
||||
from litellm.integrations.arize_ai import ArizeLogger
|
||||
|
@ -505,20 +507,20 @@ class OpenTelemetry(CustomLogger):
|
|||
)
|
||||
|
||||
# The unique identifier for the completion.
|
||||
if response_obj.get("id"):
|
||||
if response_obj and response_obj.get("id"):
|
||||
self.safe_set_attribute(
|
||||
span=span, key="gen_ai.response.id", value=response_obj.get("id")
|
||||
)
|
||||
|
||||
# The model used to generate the response.
|
||||
if response_obj.get("model"):
|
||||
if response_obj and response_obj.get("model"):
|
||||
self.safe_set_attribute(
|
||||
span=span,
|
||||
key=SpanAttributes.LLM_RESPONSE_MODEL,
|
||||
value=response_obj.get("model"),
|
||||
)
|
||||
|
||||
usage = response_obj.get("usage")
|
||||
usage = response_obj and response_obj.get("usage")
|
||||
if usage:
|
||||
self.safe_set_attribute(
|
||||
span=span,
|
||||
|
@ -619,7 +621,7 @@ class OpenTelemetry(CustomLogger):
|
|||
)
|
||||
|
||||
except Exception as e:
|
||||
verbose_logger.error(
|
||||
verbose_logger.exception(
|
||||
"OpenTelemetry logging error in set_attributes %s", str(e)
|
||||
)
|
||||
|
||||
|
|
|
@ -429,6 +429,14 @@ def _get_openai_compatible_provider_info( # noqa: PLR0915
|
|||
) = litellm.HostedVLLMChatConfig()._get_openai_compatible_provider_info(
|
||||
api_base, api_key
|
||||
)
|
||||
elif custom_llm_provider == "lm_studio":
|
||||
# lm_studio is openai compatible, we just need to set this to custom_openai
|
||||
(
|
||||
api_base,
|
||||
dynamic_api_key,
|
||||
) = litellm.LMStudioChatConfig()._get_openai_compatible_provider_info(
|
||||
api_base, api_key
|
||||
)
|
||||
elif custom_llm_provider == "deepseek":
|
||||
# deepseek is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.deepseek.com/v1
|
||||
api_base = (
|
||||
|
|
|
@ -22,9 +22,10 @@ class AzureAICohereConfig:
|
|||
pass
|
||||
|
||||
def _map_azure_model_group(self, model: str) -> str:
|
||||
if "model=offer-cohere-embed-multili-paygo":
|
||||
|
||||
if model == "offer-cohere-embed-multili-paygo":
|
||||
return "Cohere-embed-v3-multilingual"
|
||||
elif "model=offer-cohere-embed-english-paygo":
|
||||
elif model == "offer-cohere-embed-english-paygo":
|
||||
return "Cohere-embed-v3-english"
|
||||
|
||||
return model
|
||||
|
|
26
litellm/llms/lm_studio/chat/transformation.py
Normal file
26
litellm/llms/lm_studio/chat/transformation.py
Normal file
|
@ -0,0 +1,26 @@
|
|||
"""
|
||||
Translate from OpenAI's `/v1/chat/completions` to LM Studio's `/chat/completions`
|
||||
"""
|
||||
|
||||
import types
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
import litellm
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
|
||||
|
||||
from ....utils import _remove_additional_properties, _remove_strict_from_schema
|
||||
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
|
||||
|
||||
|
||||
class LMStudioChatConfig(OpenAIGPTConfig):
|
||||
def _get_openai_compatible_provider_info(
|
||||
self, api_base: Optional[str], api_key: Optional[str]
|
||||
) -> Tuple[Optional[str], Optional[str]]:
|
||||
api_base = api_base or get_secret_str("LM_STUDIO_API_BASE") # type: ignore
|
||||
dynamic_api_key = (
|
||||
api_key or get_secret_str("LM_STUDIO_API_KEY") or ""
|
||||
) # vllm does not require an api key
|
||||
return api_base, dynamic_api_key
|
|
@ -3,7 +3,8 @@ model_list:
|
|||
litellm_params:
|
||||
model: claude-3-5-sonnet-20240620
|
||||
api_key: os.environ/ANTHROPIC_API_KEY
|
||||
- model_name: claude-3-5-sonnet-aihubmix
|
||||
api_base: "http://0.0.0.0:8000"
|
||||
- model_name: my-fallback-openai-model
|
||||
litellm_params:
|
||||
model: openai/claude-3-5-sonnet-20240620
|
||||
input_cost_per_token: 0.000003 # 3$/M
|
||||
|
@ -15,7 +16,7 @@ model_list:
|
|||
model: gemini/gemini-1.5-flash-002
|
||||
|
||||
litellm_settings:
|
||||
fallbacks: [{ "claude-3-5-sonnet-20240620": ["claude-3-5-sonnet-aihubmix"] }]
|
||||
fallbacks: [{ "claude-3-5-sonnet-20240620": ["my-fallback-openai-model"] }]
|
||||
callbacks: ["otel", "prometheus"]
|
||||
|
||||
router_settings:
|
||||
|
|
|
@ -8631,11 +8631,16 @@ def is_cached_message(message: AllMessageValues) -> bool:
|
|||
def is_base64_encoded(s: str) -> bool:
|
||||
try:
|
||||
# Strip out the prefix if it exists
|
||||
if s.startswith("data:"):
|
||||
s = s.split(",")[1]
|
||||
if not s.startswith(
|
||||
"data:"
|
||||
): # require `data:` for base64 str, like openai. Prevents false positives like s='Dog'
|
||||
return False
|
||||
|
||||
s = s.split(",")[1]
|
||||
|
||||
# Try to decode the string
|
||||
decoded_bytes = base64.b64decode(s, validate=True)
|
||||
|
||||
# Check if the original string can be re-encoded to the same string
|
||||
return base64.b64encode(decoded_bytes).decode("utf-8") == s
|
||||
except Exception:
|
||||
|
|
41
tests/llm_translation/test_azure_ai.py
Normal file
41
tests/llm_translation/test_azure_ai.py
Normal file
|
@ -0,0 +1,41 @@
|
|||
# What is this?
|
||||
## Unit tests for Azure AI integration
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
import litellm.types
|
||||
import litellm.types.utils
|
||||
from litellm.llms.anthropic.chat import ModelResponseIterator
|
||||
|
||||
load_dotenv()
|
||||
import io
|
||||
import os
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
from typing import Optional
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
import litellm
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model_group_header, expected_model",
|
||||
[
|
||||
("offer-cohere-embed-multili-paygo", "Cohere-embed-v3-multilingual"),
|
||||
("offer-cohere-embed-english-paygo", "Cohere-embed-v3-english"),
|
||||
],
|
||||
)
|
||||
def test_map_azure_model_group(model_group_header, expected_model):
|
||||
from litellm.llms.azure_ai.embed.cohere_transformation import AzureAICohereConfig
|
||||
|
||||
config = AzureAICohereConfig()
|
||||
assert config._map_azure_model_group(model_group_header) == expected_model
|
|
@ -1905,7 +1905,9 @@ def test_hf_test_completion_tgi():
|
|||
# hf_test_completion_tgi()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("provider", ["openai", "hosted_vllm"]) # "vertex_ai",
|
||||
@pytest.mark.parametrize(
|
||||
"provider", ["openai", "hosted_vllm", "lm_studio"]
|
||||
) # "vertex_ai",
|
||||
@pytest.mark.asyncio
|
||||
async def test_openai_compatible_custom_api_base(provider):
|
||||
litellm.set_verbose = True
|
||||
|
@ -1931,8 +1933,8 @@ async def test_openai_compatible_custom_api_base(provider):
|
|||
api_base="my-custom-api-base",
|
||||
hello="world",
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
mock_call.assert_called_once()
|
||||
|
||||
|
|
|
@ -194,7 +194,7 @@ def _azure_ai_image_mock_response(*args, **kwargs):
|
|||
)
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("sync_mode", [True, False])
|
||||
@pytest.mark.parametrize("sync_mode", [True]) # , False
|
||||
@pytest.mark.asyncio
|
||||
async def test_azure_ai_embedding_image(model, api_base, api_key, sync_mode):
|
||||
try:
|
||||
|
|
|
@ -839,7 +839,11 @@ def test_is_base64_encoded():
|
|||
|
||||
|
||||
@mock.patch("httpx.AsyncClient")
|
||||
@mock.patch.dict(os.environ, {"SSL_VERIFY": "/certificate.pem", "SSL_CERTIFICATE": "/client.pem"}, clear=True)
|
||||
@mock.patch.dict(
|
||||
os.environ,
|
||||
{"SSL_VERIFY": "/certificate.pem", "SSL_CERTIFICATE": "/client.pem"},
|
||||
clear=True,
|
||||
)
|
||||
def test_async_http_handler(mock_async_client):
|
||||
import httpx
|
||||
|
||||
|
@ -861,6 +865,7 @@ def test_async_http_handler(mock_async_client):
|
|||
verify="/certificate.pem",
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model, expected_bool", [("gpt-3.5-turbo", False), ("gpt-4o-audio-preview", True)]
|
||||
)
|
||||
|
@ -874,3 +879,15 @@ def test_supports_audio_input(model, expected_bool):
|
|||
|
||||
assert supports_pc == expected_bool
|
||||
|
||||
|
||||
def test_is_base64_encoded_2():
|
||||
from litellm.utils import is_base64_encoded
|
||||
|
||||
assert (
|
||||
is_base64_encoded(
|
||||
s=""
|
||||
)
|
||||
is True
|
||||
)
|
||||
|
||||
assert is_base64_encoded(s="Dog") is False
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue