forked from phoenix/litellm-mirror
Merge pull request #1200 from MateoCamara/explicit-args-acomplete
feat: added explicit args to acomplete
This commit is contained in:
commit
2433d6c613
3 changed files with 92 additions and 8 deletions
|
@ -130,7 +130,39 @@ class Completions:
|
|||
|
||||
|
||||
@client
|
||||
async def acompletion(*args, **kwargs):
|
||||
async def acompletion(
|
||||
model: str,
|
||||
# Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create
|
||||
messages: List = [],
|
||||
functions: Optional[List] = None,
|
||||
function_call: Optional[str] = None,
|
||||
timeout: Optional[Union[float, int]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
n: Optional[int] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stop=None,
|
||||
max_tokens: Optional[float] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
logit_bias: Optional[dict] = None,
|
||||
user: Optional[str] = None,
|
||||
# openai v1.0+ new params
|
||||
response_format: Optional[dict] = None,
|
||||
seed: Optional[int] = None,
|
||||
tools: Optional[List] = None,
|
||||
tool_choice: Optional[str] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
deployment_id=None,
|
||||
# set api_base, api_version, api_key
|
||||
base_url: Optional[str] = None,
|
||||
api_version: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
model_list: Optional[list] = None, # pass in a list of api_base,keys, etc.
|
||||
# Optional liteLLM function params
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Asynchronously executes a litellm.completion() call for any of litellm supported llms (example gpt-4, gpt-3.5-turbo, claude-2, command-nightly)
|
||||
|
||||
|
@ -170,10 +202,36 @@ async def acompletion(*args, **kwargs):
|
|||
- If `stream` is True, the function returns an async generator that yields completion lines.
|
||||
"""
|
||||
loop = asyncio.get_event_loop()
|
||||
model = args[0] if len(args) > 0 else kwargs["model"]
|
||||
### PASS ARGS TO COMPLETION ###
|
||||
kwargs["acompletion"] = True
|
||||
custom_llm_provider = None
|
||||
# Adjusted to use explicit arguments instead of *args and **kwargs
|
||||
completion_kwargs = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
"functions": functions,
|
||||
"function_call": function_call,
|
||||
"timeout": timeout,
|
||||
"temperature": temperature,
|
||||
"top_p": top_p,
|
||||
"n": n,
|
||||
"stream": stream,
|
||||
"stop": stop,
|
||||
"max_tokens": max_tokens,
|
||||
"presence_penalty": presence_penalty,
|
||||
"frequency_penalty": frequency_penalty,
|
||||
"logit_bias": logit_bias,
|
||||
"user": user,
|
||||
"response_format": response_format,
|
||||
"seed": seed,
|
||||
"tools": tools,
|
||||
"tool_choice": tool_choice,
|
||||
"logprobs": logprobs,
|
||||
"top_logprobs": top_logprobs,
|
||||
"deployment_id": deployment_id,
|
||||
"base_url": base_url,
|
||||
"api_version": api_version,
|
||||
"api_key": api_key,
|
||||
"model_list": model_list,
|
||||
"acompletion": True # assuming this is a required parameter
|
||||
}
|
||||
try:
|
||||
# Use a partial function to pass your keyword arguments
|
||||
func = partial(completion, *args, **kwargs)
|
||||
|
@ -182,9 +240,7 @@ async def acompletion(*args, **kwargs):
|
|||
ctx = contextvars.copy_context()
|
||||
func_with_context = partial(ctx.run, func)
|
||||
|
||||
_, custom_llm_provider, _, _ = get_llm_provider(
|
||||
model=model, api_base=kwargs.get("api_base", None)
|
||||
)
|
||||
_, custom_llm_provider, _, _ = get_llm_provider(model=model, api_base=completion_kwargs.get("base_url", None))
|
||||
|
||||
if (
|
||||
custom_llm_provider == "openai"
|
||||
|
@ -3200,9 +3256,11 @@ def stream_chunk_builder(chunks: list, messages: Optional[list] = None):
|
|||
created = chunks[0]["created"]
|
||||
model = chunks[0]["model"]
|
||||
system_fingerprint = chunks[0].get("system_fingerprint", None)
|
||||
|
||||
if isinstance(
|
||||
chunks[0]["choices"][0], litellm.utils.TextChoices
|
||||
): # route to the text completion logic
|
||||
|
||||
return stream_chunk_builder_text_completion(chunks=chunks, messages=messages)
|
||||
role = chunks[0]["choices"][0]["delta"]["role"]
|
||||
finish_reason = chunks[-1]["choices"][0]["finish_reason"]
|
||||
|
|
23
litellm/tests/test_acompletion.py
Normal file
23
litellm/tests/test_acompletion.py
Normal file
|
@ -0,0 +1,23 @@
|
|||
import pytest
|
||||
from litellm import acompletion
|
||||
|
||||
|
||||
def test_acompletion_params():
|
||||
import inspect
|
||||
from litellm.types.completion import CompletionRequest
|
||||
|
||||
acompletion_params_odict = inspect.signature(acompletion).parameters
|
||||
acompletion_params = {name: param.annotation for name, param in acompletion_params_odict.items()}
|
||||
completion_params = {field_name: field_type for field_name, field_type in CompletionRequest.__annotations__.items()}
|
||||
|
||||
# remove kwargs
|
||||
acompletion_params.pop("kwargs", None)
|
||||
|
||||
keys_acompletion = set(acompletion_params.keys())
|
||||
keys_completion = set(completion_params.keys())
|
||||
|
||||
# Assert that the parameters are the same
|
||||
if keys_acompletion != keys_completion:
|
||||
pytest.fail("The parameters of the acompletion function and the CompletionRequest class are not the same.")
|
||||
|
||||
# test_acompletion_params()
|
|
@ -14,6 +14,7 @@ import subprocess, os
|
|||
import litellm, openai
|
||||
import itertools
|
||||
import random, uuid, requests
|
||||
from functools import wraps
|
||||
import datetime, time
|
||||
import tiktoken
|
||||
import uuid
|
||||
|
@ -1972,6 +1973,7 @@ def client(original_function):
|
|||
# [Non-Blocking Error]
|
||||
pass
|
||||
|
||||
@wraps(original_function)
|
||||
def wrapper(*args, **kwargs):
|
||||
start_time = datetime.datetime.now()
|
||||
result = None
|
||||
|
@ -2166,6 +2168,7 @@ def client(original_function):
|
|||
e.message += f"\n Check the log in your dashboard - {liteDebuggerClient.dashboard_url}"
|
||||
raise e
|
||||
|
||||
@wraps(original_function)
|
||||
async def wrapper_async(*args, **kwargs):
|
||||
start_time = datetime.datetime.now()
|
||||
result = None
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue