Cost tracking improvements (#5828)

* feat(litellm_logging.py): update standard logging payload to include debug information for cost failures

Also includes fixes for cohere rerank cost tracking + databricks llama2 model cost tracking

 Easier to repro cost failures and improve reliability in prod

* fix(proxy_server.py): emit cost failure debug info for slack alerting

Improves debug information for cost tracking failures, on slack alerting
This commit is contained in:
Krish Dholakia 2024-09-21 21:47:50 -07:00 committed by GitHub
parent 8039b95aaf
commit 2488e4b45f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 117 additions and 45 deletions

View file

@ -41,6 +41,7 @@ from litellm.types.utils import (
ModelResponse,
StandardLoggingHiddenParams,
StandardLoggingMetadata,
StandardLoggingModelCostFailureDebugInformation,
StandardLoggingModelInformation,
StandardLoggingPayload,
StandardLoggingPayloadStatus,
@ -574,7 +575,7 @@ class Logging:
RerankResponse,
],
cache_hit: Optional[bool] = None,
):
) -> Optional[float]:
"""
Calculate response cost using result + logging object variables.
@ -590,22 +591,53 @@ class Logging:
if cache_hit is None:
cache_hit = self.model_call_details.get("cache_hit", False)
response_cost = litellm.response_cost_calculator(
response_object=result,
model=self.model,
cache_hit=cache_hit,
custom_llm_provider=self.model_call_details.get(
"custom_llm_provider", None
),
base_model=_get_base_model_from_metadata(
model_call_details=self.model_call_details
),
call_type=self.call_type,
optional_params=self.optional_params,
custom_pricing=custom_pricing,
)
try:
response_cost_calculator_kwargs = {
"response_object": result,
"model": self.model,
"cache_hit": cache_hit,
"custom_llm_provider": self.model_call_details.get(
"custom_llm_provider", None
),
"base_model": _get_base_model_from_metadata(
model_call_details=self.model_call_details
),
"call_type": self.call_type,
"optional_params": self.optional_params,
"custom_pricing": custom_pricing,
}
except Exception as e: # error creating kwargs for cost calculation
self.model_call_details["response_cost_failure_debug_information"] = (
StandardLoggingModelCostFailureDebugInformation(
error_str=str(e),
traceback_str=traceback.format_exc(),
)
)
return None
return response_cost
try:
response_cost = litellm.response_cost_calculator(
**response_cost_calculator_kwargs
)
return response_cost
except Exception as e: # error calculating cost
self.model_call_details["response_cost_failure_debug_information"] = (
StandardLoggingModelCostFailureDebugInformation(
error_str=str(e),
traceback_str=traceback.format_exc(),
model=response_cost_calculator_kwargs["model"],
cache_hit=response_cost_calculator_kwargs["cache_hit"],
custom_llm_provider=response_cost_calculator_kwargs[
"custom_llm_provider"
],
base_model=response_cost_calculator_kwargs["base_model"],
call_type=response_cost_calculator_kwargs["call_type"],
custom_pricing=response_cost_calculator_kwargs["custom_pricing"],
)
)
return None
def _success_handler_helper_fn(
self, result=None, start_time=None, end_time=None, cache_hit=None
@ -2501,12 +2533,16 @@ def get_standard_logging_object_payload(
)
except Exception:
verbose_logger.debug( # keep in debug otherwise it will trigger on every call
"Model is not mapped in model cost map. Defaulting to None model_cost_information for standard_logging_payload"
"Model={} is not mapped in model cost map. Defaulting to None model_cost_information for standard_logging_payload".format(
model_cost_name
)
)
model_cost_information = StandardLoggingModelInformation(
model_map_key=model_cost_name, model_map_value=None
)
response_cost: float = kwargs.get("response_cost", 0) or 0.0
payload: StandardLoggingPayload = StandardLoggingPayload(
id=str(id),
call_type=call_type or "",
@ -2519,7 +2555,7 @@ def get_standard_logging_object_payload(
model=kwargs.get("model", "") or "",
metadata=clean_metadata,
cache_key=cache_key,
response_cost=kwargs.get("response_cost", 0),
response_cost=response_cost,
total_tokens=usage.get("total_tokens", 0),
prompt_tokens=usage.get("prompt_tokens", 0),
completion_tokens=usage.get("completion_tokens", 0),
@ -2537,6 +2573,9 @@ def get_standard_logging_object_payload(
hidden_params=clean_hidden_params,
model_map_information=model_cost_information,
error_str=error_str,
response_cost_failure_debug_info=kwargs.get(
"response_cost_failure_debug_information"
),
)
verbose_logger.debug(