forked from phoenix/litellm-mirror
(feat) parallel HF text completion + completion_with_retries show exception
This commit is contained in:
parent
7219fcb968
commit
2498d95dc5
1 changed files with 20 additions and 15 deletions
|
@ -1412,8 +1412,8 @@ def completion_with_retries(*args, **kwargs):
|
|||
"""
|
||||
try:
|
||||
import tenacity
|
||||
except:
|
||||
raise Exception("tenacity import failed please run `pip install tenacity`")
|
||||
except Exception as e:
|
||||
raise Exception(f"tenacity import failed please run `pip install tenacity`. Error{e}")
|
||||
|
||||
num_retries = kwargs.pop("num_retries", 3)
|
||||
retryer = tenacity.Retrying(stop=tenacity.stop_after_attempt(num_retries), reraise=True)
|
||||
|
@ -1989,27 +1989,32 @@ def text_completion(
|
|||
|
||||
# processing prompt - users can pass raw tokens to OpenAI Completion()
|
||||
if type(prompt) == list:
|
||||
import concurrent.futures
|
||||
tokenizer = tiktoken.encoding_for_model("text-davinci-003")
|
||||
## if it's a 2d list - each element in the list is a text_completion() request
|
||||
if len(prompt) > 0 and type(prompt[0]) == list:
|
||||
responses = [None for x in prompt] # init responses
|
||||
for i, individual_prompt in enumerate(prompt):
|
||||
decoded_prompt = tokenizer.decode(individual_prompt) # type: ignore
|
||||
all_params = {**kwargs, **optional_params} # combine optional params and kwargs
|
||||
def process_prompt(i, individual_prompt):
|
||||
decoded_prompt = tokenizer.decode(individual_prompt)
|
||||
all_params = {**kwargs, **optional_params}
|
||||
response = text_completion(
|
||||
model = model, # type: ignore
|
||||
prompt = decoded_prompt, # type: ignore
|
||||
model=model,
|
||||
prompt=decoded_prompt,
|
||||
num_retries=3,# ensure this does not fail for the batch
|
||||
*args,
|
||||
**all_params,
|
||||
)
|
||||
responses[i] = response["choices"][0]
|
||||
|
||||
#print(response)
|
||||
text_completion_response["id"] = response.get("id", None)
|
||||
text_completion_response["object"] = "text_completion"
|
||||
text_completion_response["created"] = response.get("created", None)
|
||||
text_completion_response["model"] = response.get("model", None)
|
||||
return response["choices"][0]
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = [executor.submit(process_prompt, i, individual_prompt) for i, individual_prompt in enumerate(prompt)]
|
||||
for i, future in enumerate(concurrent.futures.as_completed(futures)):
|
||||
responses[i] = future.result()
|
||||
text_completion_response["choices"] = responses
|
||||
text_completion_response["usage"] = response.get("usage", None)
|
||||
|
||||
return text_completion_response
|
||||
else:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue