(docs) parallel function calling

This commit is contained in:
ishaan-jaff 2023-11-18 14:09:20 -08:00
parent e9e1d69814
commit 25d76cdc9d

View file

@ -32,6 +32,9 @@ In this example we define a single function `get_current_weather`.
```python
import litellm
import json
# set openai api key
import os
os.environ['OPENAI_API_KEY'] = "" # litellm reads OPENAI_API_KEY from .env and sends the request
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
@ -126,6 +129,23 @@ Below is an explanation of what is happening in the code snippet above for Paral
### Step1: litellm.completion() with `tools` set to `get_current_weather`
```python
import litellm
import json
# set openai api key
import os
os.environ['OPENAI_API_KEY'] = "" # litellm reads OPENAI_API_KEY from .env and sends the request
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
@ -147,13 +167,16 @@ tools = [
},
}
]
response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("Response\n", response)
print("\nLLM Response1:\n", response)
response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls
```
##### Expected output
@ -186,9 +209,6 @@ ModelResponse(
After sending the initial request, parse the model response to identify the function calls it wants to make. In this example, we expect three tool calls, each corresponding to a location (San Francisco, Tokyo, and Paris).
```python
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
# Check if the model wants to call a function
if tool_calls:
# Execute the functions and prepare responses
@ -199,6 +219,7 @@ if tool_calls:
messages.append(response_message) # Extend conversation with assistant's reply
for tool_call in tool_calls:
print(f"\nExecuting tool call\n{tool_call}")
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
@ -207,6 +228,7 @@ if tool_calls:
location=function_args.get("location"),
unit=function_args.get("unit"),
)
print(f"Result from tool call\n{function_response}\n")
# Extend conversation with function response
messages.append(
@ -228,7 +250,6 @@ second_response = litellm.completion(
messages=messages,
)
print("Second Response\n", second_response)
```
#### Expected output