forked from phoenix/litellm-mirror
clean up code files
This commit is contained in:
parent
e25f7e94e6
commit
272c0ee7f2
13 changed files with 349 additions and 271 deletions
304
litellm/main.py
304
litellm/main.py
|
@ -2,85 +2,16 @@ import os, openai, cohere, replicate, sys
|
|||
from typing import Any
|
||||
from func_timeout import func_set_timeout, FunctionTimedOut
|
||||
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
|
||||
import json
|
||||
import traceback
|
||||
import threading
|
||||
import dotenv
|
||||
import traceback
|
||||
import subprocess
|
||||
import uuid
|
||||
|
||||
import litellm
|
||||
from litellm import client, logging
|
||||
from litellm import success_callback, failure_callback
|
||||
import random
|
||||
####### ENVIRONMENT VARIABLES ###################
|
||||
dotenv.load_dotenv() # Loading env variables using dotenv
|
||||
set_verbose = False
|
||||
sentry_sdk_instance = None
|
||||
capture_exception = None
|
||||
add_breadcrumb = None
|
||||
posthog = None
|
||||
slack_app = None
|
||||
alerts_channel = None
|
||||
success_callback = []
|
||||
failure_callback = []
|
||||
callback_list = []
|
||||
user_logger_fn = None
|
||||
additional_details = {}
|
||||
|
||||
## Set verbose to true -> ```litellm.verbose = True```
|
||||
def print_verbose(print_statement):
|
||||
if set_verbose:
|
||||
print(f"LiteLLM: {print_statement}")
|
||||
print("Get help - https://discord.com/invite/wuPM9dRgDw")
|
||||
|
||||
####### COMPLETION MODELS ###################
|
||||
open_ai_chat_completion_models = [
|
||||
'gpt-3.5-turbo',
|
||||
'gpt-4'
|
||||
]
|
||||
open_ai_text_completion_models = [
|
||||
'text-davinci-003'
|
||||
]
|
||||
|
||||
cohere_models = [
|
||||
'command-nightly',
|
||||
]
|
||||
|
||||
anthropic_models = [
|
||||
"claude-2",
|
||||
"claude-instant-1"
|
||||
]
|
||||
|
||||
####### EMBEDDING MODELS ###################
|
||||
open_ai_embedding_models = [
|
||||
'text-embedding-ada-002'
|
||||
]
|
||||
|
||||
####### CLIENT ################### make it easy to log completion/embedding runs
|
||||
def client(original_function):
|
||||
def function_setup(): #just run once to check if user wants to send their data anywhere
|
||||
try:
|
||||
if len(success_callback) > 0 or len(failure_callback) > 0 and len(callback_list) == 0:
|
||||
callback_list = list(set(success_callback + failure_callback))
|
||||
set_callbacks(callback_list=callback_list)
|
||||
except: # DO NOT BLOCK running the function because of this
|
||||
print_verbose(f"[Non-Blocking] {traceback.format_exc()}")
|
||||
pass
|
||||
|
||||
def wrapper(*args, **kwargs):
|
||||
# Code to be executed before the embedding function
|
||||
try:
|
||||
function_setup()
|
||||
## EMBEDDING CALL
|
||||
result = original_function(*args, **kwargs)
|
||||
## LOG SUCCESS
|
||||
my_thread = threading.Thread(target=handle_success, args=(args, kwargs)) # don't interrupt execution of main thread
|
||||
my_thread.start()
|
||||
return result
|
||||
except Exception as e:
|
||||
traceback_exception = traceback.format_exc()
|
||||
my_thread = threading.Thread(target=handle_failure, args=(e, traceback.format_exc(), args, kwargs)) # don't interrupt execution of main thread
|
||||
my_thread.start()
|
||||
raise e
|
||||
return wrapper
|
||||
|
||||
|
||||
def get_optional_params(
|
||||
|
@ -128,6 +59,7 @@ def get_optional_params(
|
|||
####### COMPLETION ENDPOINTS ################
|
||||
#############################################
|
||||
@client
|
||||
<<<<<<< HEAD
|
||||
@func_set_timeout(180, allowOverride=True) ## https://pypi.org/project/func-timeout/ - timeouts, in case calls hang (e.g. Azure)
|
||||
def completion(
|
||||
model, messages, # required params
|
||||
|
@ -145,6 +77,12 @@ def completion(
|
|||
temperature=temperature, top_p=top_p, n=n, stream=stream, stop=stop, max_tokens=max_tokens,
|
||||
presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, logit_bias=logit_bias, user=user
|
||||
)
|
||||
=======
|
||||
@func_set_timeout(60, allowOverride=True) ## https://pypi.org/project/func-timeout/ - timeouts, in case calls hang (e.g. Azure)
|
||||
def completion(model, messages, max_tokens=None, *, forceTimeout=60, azure=False, logger_fn=None): # ,*,.. if optional params like forceTimeout, azure and logger_fn are passed then they're keyword arguments
|
||||
try:
|
||||
response = None
|
||||
>>>>>>> bd42ec8 (clean up code files)
|
||||
if azure == True:
|
||||
# azure configs
|
||||
openai.api_type = "azure"
|
||||
|
@ -219,7 +157,7 @@ def completion(
|
|||
]
|
||||
}
|
||||
response = new_response
|
||||
elif model in anthropic_models:
|
||||
elif model in litellm.anthropic_models:
|
||||
#anthropic defaults to os.environ.get("ANTHROPIC_API_KEY")
|
||||
prompt = f"{HUMAN_PROMPT}"
|
||||
for message in messages:
|
||||
|
@ -259,7 +197,7 @@ def completion(
|
|||
}
|
||||
print_verbose(f"new response: {new_response}")
|
||||
response = new_response
|
||||
elif model in cohere_models:
|
||||
elif model in litellm.cohere_models:
|
||||
cohere_key = os.environ.get("COHERE_API_KEY")
|
||||
co = cohere.Client(cohere_key)
|
||||
prompt = " ".join([message["content"] for message in messages])
|
||||
|
@ -283,8 +221,41 @@ def completion(
|
|||
],
|
||||
}
|
||||
response = new_response
|
||||
<<<<<<< HEAD
|
||||
else:
|
||||
raise Exception(f"Model '{model}' not found. Please check your model name and try again.")
|
||||
=======
|
||||
|
||||
elif model in litellm.open_ai_chat_completion_models:
|
||||
openai.api_type = "openai"
|
||||
openai.api_base = "https://api.openai.com/v1"
|
||||
openai.api_version = None
|
||||
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
||||
## LOGGING
|
||||
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)
|
||||
## COMPLETION CALL
|
||||
response = openai.ChatCompletion.create(
|
||||
model=model,
|
||||
messages = messages
|
||||
)
|
||||
elif model in litellm.open_ai_text_completion_models:
|
||||
openai.api_type = "openai"
|
||||
openai.api_base = "https://api.openai.com/v1"
|
||||
openai.api_version = None
|
||||
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
||||
prompt = " ".join([message["content"] for message in messages])
|
||||
## LOGGING
|
||||
logging(model=model, input=prompt, azure=azure, logger_fn=logger_fn)
|
||||
## COMPLETION CALL
|
||||
response = openai.Completion.create(
|
||||
model=model,
|
||||
prompt = prompt
|
||||
)
|
||||
else:
|
||||
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)
|
||||
args = locals()
|
||||
raise ValueError(f"No valid completion model args passed in - {args}")
|
||||
>>>>>>> bd42ec8 (clean up code files)
|
||||
return response
|
||||
except Exception as e:
|
||||
logging(model=model, input=messages, azure=azure, additional_args={"max_tokens": max_tokens}, logger_fn=logger_fn)
|
||||
|
@ -307,7 +278,7 @@ def embedding(model, input=[], azure=False, forceTimeout=60, logger_fn=None):
|
|||
## EMBEDDING CALL
|
||||
response = openai.Embedding.create(input=input, engine=model)
|
||||
print_verbose(f"response_value: {str(response)[:50]}")
|
||||
elif model in open_ai_embedding_models:
|
||||
elif model in litellm.open_ai_embedding_models:
|
||||
openai.api_type = "openai"
|
||||
openai.api_base = "https://api.openai.com/v1"
|
||||
openai.api_version = None
|
||||
|
@ -324,180 +295,11 @@ def embedding(model, input=[], azure=False, forceTimeout=60, logger_fn=None):
|
|||
|
||||
return response
|
||||
|
||||
|
||||
####### HELPER FUNCTIONS ################
|
||||
## Set verbose to true -> ```litellm.set_verbose = True```
|
||||
def print_verbose(print_statement):
|
||||
if litellm.set_verbose:
|
||||
print(f"LiteLLM: {print_statement}")
|
||||
if random.random() <= 0.3:
|
||||
print("Get help - https://discord.com/invite/wuPM9dRgDw")
|
||||
|
||||
def set_callbacks(callback_list):
|
||||
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel
|
||||
for callback in callback_list:
|
||||
if callback == "sentry":
|
||||
try:
|
||||
import sentry_sdk
|
||||
except ImportError:
|
||||
print_verbose("Package 'sentry_sdk' is missing. Installing it...")
|
||||
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'sentry_sdk'])
|
||||
import sentry_sdk
|
||||
sentry_sdk_instance = sentry_sdk
|
||||
sentry_sdk_instance.init(dsn=os.environ.get("SENTRY_API_URL"), traces_sample_rate=float(os.environ.get("SENTRY_API_TRACE_RATE")))
|
||||
capture_exception = sentry_sdk_instance.capture_exception
|
||||
add_breadcrumb = sentry_sdk_instance.add_breadcrumb
|
||||
elif callback == "posthog":
|
||||
try:
|
||||
from posthog import Posthog
|
||||
except ImportError:
|
||||
print_verbose("Package 'posthog' is missing. Installing it...")
|
||||
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'posthog'])
|
||||
from posthog import Posthog
|
||||
posthog = Posthog(
|
||||
project_api_key=os.environ.get("POSTHOG_API_KEY"),
|
||||
host=os.environ.get("POSTHOG_API_URL"))
|
||||
elif callback == "slack":
|
||||
try:
|
||||
from slack_bolt import App
|
||||
except ImportError:
|
||||
print_verbose("Package 'slack_bolt' is missing. Installing it...")
|
||||
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'slack_bolt'])
|
||||
from slack_bolt import App
|
||||
slack_app = App(
|
||||
token=os.environ.get("SLACK_API_TOKEN"),
|
||||
signing_secret=os.environ.get("SLACK_API_SECRET")
|
||||
)
|
||||
alerts_channel = os.environ["SLACK_API_CHANNEL"]
|
||||
print_verbose(f"Initialized Slack App: {slack_app}")
|
||||
|
||||
|
||||
def handle_failure(exception, traceback_exception, args, kwargs):
|
||||
print_verbose(f"handle_failure args: {args}")
|
||||
print_verbose(f"handle_failure kwargs: {kwargs}")
|
||||
|
||||
success_handler = additional_details.pop("success_handler", None)
|
||||
failure_handler = additional_details.pop("failure_handler", None)
|
||||
|
||||
additional_details["Event_Name"] = additional_details.pop("failed_event_name", "litellm.failed_query")
|
||||
print_verbose(f"self.failure_callback: {failure_callback}")
|
||||
|
||||
print_verbose(f"additional_details: {additional_details}")
|
||||
for callback in failure_callback:
|
||||
try:
|
||||
if callback == "slack":
|
||||
slack_msg = ""
|
||||
if len(kwargs) > 0:
|
||||
for key in kwargs:
|
||||
slack_msg += f"{key}: {kwargs[key]}\n"
|
||||
if len(args) > 0:
|
||||
for i, arg in enumerate(args):
|
||||
slack_msg += f"LiteLLM_Args_{str(i)}: {arg}"
|
||||
for detail in additional_details:
|
||||
slack_msg += f"{detail}: {additional_details[detail]}\n"
|
||||
slack_msg += f"Traceback: {traceback_exception}"
|
||||
print_verbose(f"This is the slack message: {slack_msg}")
|
||||
slack_app.client.chat_postMessage(channel=alerts_channel, text=slack_msg)
|
||||
elif callback == "sentry":
|
||||
capture_exception(exception)
|
||||
elif callback == "posthog":
|
||||
print_verbose(f"inside posthog, additional_details: {len(additional_details.keys())}")
|
||||
ph_obj = {}
|
||||
if len(kwargs) > 0:
|
||||
ph_obj = kwargs
|
||||
if len(args) > 0:
|
||||
for i, arg in enumerate(args):
|
||||
ph_obj["litellm_args_" + str(i)] = arg
|
||||
print_verbose(f"ph_obj: {ph_obj}")
|
||||
for detail in additional_details:
|
||||
ph_obj[detail] = additional_details[detail]
|
||||
event_name = additional_details["Event_Name"]
|
||||
print_verbose(f"PostHog Event Name: {event_name}")
|
||||
if "user_id" in additional_details:
|
||||
posthog.capture(additional_details["user_id"], event_name, ph_obj)
|
||||
else: # PostHog calls require a unique id to identify a user - https://posthog.com/docs/libraries/python
|
||||
print(f"ph_obj: {ph_obj})")
|
||||
unique_id = str(uuid.uuid4())
|
||||
posthog.capture(unique_id, event_name)
|
||||
print_verbose(f"successfully logged to PostHog!")
|
||||
except:
|
||||
print_verbose(f"Error Occurred while logging failure: {traceback.format_exc()}")
|
||||
pass
|
||||
|
||||
if failure_handler and callable(failure_handler):
|
||||
call_details = {
|
||||
"exception": exception,
|
||||
"additional_details": additional_details
|
||||
}
|
||||
failure_handler(call_details)
|
||||
pass
|
||||
|
||||
|
||||
def handle_input(model_call_details={}):
|
||||
if len(model_call_details.keys()) > 0:
|
||||
model = model_call_details["model"] if "model" in model_call_details else None
|
||||
if model:
|
||||
for callback in callback_list:
|
||||
if callback == "sentry": # add a sentry breadcrumb if user passed in sentry integration
|
||||
add_breadcrumb(
|
||||
category=f'{model}',
|
||||
message='Trying request model {} input {}'.format(model, json.dumps(model_call_details)),
|
||||
level='info',
|
||||
)
|
||||
if user_logger_fn and callable(user_logger_fn):
|
||||
user_logger_fn(model_call_details)
|
||||
pass
|
||||
|
||||
def handle_success(*args, **kwargs):
|
||||
success_handler = additional_details.pop("success_handler", None)
|
||||
failure_handler = additional_details.pop("failure_handler", None)
|
||||
additional_details["Event_Name"] = additional_details.pop("successful_event_name", "litellm.succes_query")
|
||||
for callback in success_callback:
|
||||
try:
|
||||
if callback == "posthog":
|
||||
ph_obj = {}
|
||||
for detail in additional_details:
|
||||
ph_obj[detail] = additional_details[detail]
|
||||
event_name = additional_details["Event_Name"]
|
||||
if "user_id" in additional_details:
|
||||
posthog.capture(additional_details["user_id"], event_name, ph_obj)
|
||||
else: # PostHog calls require a unique id to identify a user - https://posthog.com/docs/libraries/python
|
||||
unique_id = str(uuid.uuid4())
|
||||
posthog.capture(unique_id, event_name, ph_obj)
|
||||
pass
|
||||
elif callback == "slack":
|
||||
slack_msg = ""
|
||||
for detail in additional_details:
|
||||
slack_msg += f"{detail}: {additional_details[detail]}\n"
|
||||
slack_app.client.chat_postMessage(channel=alerts_channel, text=slack_msg)
|
||||
except:
|
||||
pass
|
||||
|
||||
if success_handler and callable(success_handler):
|
||||
success_handler(args, kwargs)
|
||||
pass
|
||||
|
||||
#Logging function -> log the exact model details + what's being sent | Non-Blocking
|
||||
def logging(model, input, azure=False, additional_args={}, logger_fn=None):
|
||||
try:
|
||||
model_call_details = {}
|
||||
model_call_details["model"] = model
|
||||
model_call_details["input"] = input
|
||||
model_call_details["azure"] = azure
|
||||
# log additional call details -> api key, etc.
|
||||
if azure == True or model in open_ai_chat_completion_models or model in open_ai_chat_completion_models or model in open_ai_embedding_models:
|
||||
model_call_details["api_type"] = openai.api_type
|
||||
model_call_details["api_base"] = openai.api_base
|
||||
model_call_details["api_version"] = openai.api_version
|
||||
model_call_details["api_key"] = openai.api_key
|
||||
elif "replicate" in model:
|
||||
model_call_details["api_key"] = os.environ.get("REPLICATE_API_TOKEN")
|
||||
elif model in anthropic_models:
|
||||
model_call_details["api_key"] = os.environ.get("ANTHROPIC_API_KEY")
|
||||
elif model in cohere_models:
|
||||
model_call_details["api_key"] = os.environ.get("COHERE_API_KEY")
|
||||
model_call_details["additional_args"] = additional_args
|
||||
## Logging
|
||||
print_verbose(f"Basic model call details: {model_call_details}")
|
||||
if logger_fn and callable(logger_fn):
|
||||
try:
|
||||
logger_fn(model_call_details) # Expectation: any logger function passed in by the user should accept a dict object
|
||||
except:
|
||||
print_verbose(f"[Non-Blocking] Exception occurred while logging {traceback.format_exc()}")
|
||||
pass
|
||||
except:
|
||||
pass
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue