forked from phoenix/litellm-mirror
(docs) refactor litellm proxy docs to use a hierarchy
This commit is contained in:
parent
132218e0ed
commit
278ef6bd83
12 changed files with 1356 additions and 2 deletions
72
docs/my-website/docs/proxy/caching.md
Normal file
72
docs/my-website/docs/proxy/caching.md
Normal file
|
@ -0,0 +1,72 @@
|
|||
# Caching
|
||||
Caching can be enabled by adding the `cache` key in the `config.yaml`
|
||||
#### Step 1: Add `cache` to the config.yaml
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: gpt-3.5-turbo
|
||||
|
||||
litellm_settings:
|
||||
set_verbose: True
|
||||
cache: # init cache
|
||||
type: redis # tell litellm to use redis caching
|
||||
```
|
||||
|
||||
#### Step 2: Add Redis Credentials to .env
|
||||
LiteLLM requires the following REDIS credentials in your env to enable caching
|
||||
|
||||
```shell
|
||||
REDIS_HOST = "" # REDIS_HOST='redis-18841.c274.us-east-1-3.ec2.cloud.redislabs.com'
|
||||
REDIS_PORT = "" # REDIS_PORT='18841'
|
||||
REDIS_PASSWORD = "" # REDIS_PASSWORD='liteLlmIsAmazing'
|
||||
```
|
||||
#### Step 3: Run proxy with config
|
||||
```shell
|
||||
$ litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
#### Using Caching
|
||||
Send the same request twice:
|
||||
```shell
|
||||
curl http://0.0.0.0:8000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [{"role": "user", "content": "write a poem about litellm!"}],
|
||||
"temperature": 0.7
|
||||
}'
|
||||
|
||||
curl http://0.0.0.0:8000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [{"role": "user", "content": "write a poem about litellm!"}],
|
||||
"temperature": 0.7
|
||||
}'
|
||||
```
|
||||
|
||||
#### Control caching per completion request
|
||||
Caching can be switched on/off per `/chat/completions` request
|
||||
- Caching **on** for completion - pass `caching=True`:
|
||||
```shell
|
||||
curl http://0.0.0.0:8000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [{"role": "user", "content": "write a poem about litellm!"}],
|
||||
"temperature": 0.7,
|
||||
"caching": true
|
||||
}'
|
||||
```
|
||||
- Caching **off** for completion - pass `caching=False`:
|
||||
```shell
|
||||
curl http://0.0.0.0:8000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [{"role": "user", "content": "write a poem about litellm!"}],
|
||||
"temperature": 0.7,
|
||||
"caching": false
|
||||
}'
|
||||
```
|
143
docs/my-website/docs/proxy/cli.md
Normal file
143
docs/my-website/docs/proxy/cli.md
Normal file
|
@ -0,0 +1,143 @@
|
|||
# CLI Arguments
|
||||
|
||||
#### --host
|
||||
- **Default:** `'0.0.0.0'`
|
||||
- The host for the server to listen on.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --host 127.0.0.1
|
||||
```
|
||||
|
||||
#### --port
|
||||
- **Default:** `8000`
|
||||
- The port to bind the server to.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --port 8080
|
||||
```
|
||||
|
||||
#### --num_workers
|
||||
- **Default:** `1`
|
||||
- The number of uvicorn workers to spin up.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --num_workers 4
|
||||
```
|
||||
|
||||
#### --api_base
|
||||
- **Default:** `None`
|
||||
- The API base for the model litellm should call.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --model huggingface/tinyllama --api_base https://k58ory32yinf1ly0.us-east-1.aws.endpoints.huggingface.cloud
|
||||
```
|
||||
|
||||
#### --api_version
|
||||
- **Default:** `None`
|
||||
- For Azure services, specify the API version.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --model azure/gpt-deployment --api_version 2023-08-01 --api_base https://<your api base>"
|
||||
```
|
||||
|
||||
#### --model or -m
|
||||
- **Default:** `None`
|
||||
- The model name to pass to Litellm.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --model gpt-3.5-turbo
|
||||
```
|
||||
|
||||
#### --test
|
||||
- **Type:** `bool` (Flag)
|
||||
- Proxy chat completions URL to make a test request.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --test
|
||||
```
|
||||
|
||||
#### --health
|
||||
- **Type:** `bool` (Flag)
|
||||
- Runs a health check on all models in config.yaml
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --health
|
||||
```
|
||||
|
||||
#### --alias
|
||||
- **Default:** `None`
|
||||
- An alias for the model, for user-friendly reference.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --alias my-gpt-model
|
||||
```
|
||||
|
||||
#### --debug
|
||||
- **Default:** `False`
|
||||
- **Type:** `bool` (Flag)
|
||||
- Enable debugging mode for the input.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --debug
|
||||
```
|
||||
|
||||
#### --temperature
|
||||
- **Default:** `None`
|
||||
- **Type:** `float`
|
||||
- Set the temperature for the model.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --temperature 0.7
|
||||
```
|
||||
|
||||
#### --max_tokens
|
||||
- **Default:** `None`
|
||||
- **Type:** `int`
|
||||
- Set the maximum number of tokens for the model output.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --max_tokens 50
|
||||
```
|
||||
|
||||
#### --request_timeout
|
||||
- **Default:** `600`
|
||||
- **Type:** `int`
|
||||
- Set the timeout in seconds for completion calls.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --request_timeout 300
|
||||
```
|
||||
|
||||
#### --drop_params
|
||||
- **Type:** `bool` (Flag)
|
||||
- Drop any unmapped params.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --drop_params
|
||||
```
|
||||
|
||||
#### --add_function_to_prompt
|
||||
- **Type:** `bool` (Flag)
|
||||
- If a function passed but unsupported, pass it as a part of the prompt.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --add_function_to_prompt
|
||||
```
|
||||
|
||||
#### --config
|
||||
- Configure Litellm by providing a configuration file path.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --config path/to/config.yaml
|
||||
```
|
||||
|
||||
#### --telemetry
|
||||
- **Default:** `True`
|
||||
- **Type:** `bool`
|
||||
- Help track usage of this feature.
|
||||
- **Usage:**
|
||||
```shell
|
||||
litellm --telemetry False
|
||||
```
|
||||
|
||||
|
223
docs/my-website/docs/proxy/configs.md
Normal file
223
docs/my-website/docs/proxy/configs.md
Normal file
|
@ -0,0 +1,223 @@
|
|||
# Config.yaml
|
||||
The Config allows you to set the following params
|
||||
|
||||
| Param Name | Description |
|
||||
|----------------------|---------------------------------------------------------------|
|
||||
| `model_list` | List of supported models on the server, with model-specific configs |
|
||||
| `litellm_settings` | litellm Module settings, example `litellm.drop_params=True`, `litellm.set_verbose=True`, `litellm.api_base`, `litellm.cache` |
|
||||
| `general_settings` | Server settings, example setting `master_key: sk-my_special_key` |
|
||||
| `environment_variables` | Environment Variables example, `REDIS_HOST`, `REDIS_PORT` |
|
||||
|
||||
#### Example Config
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/gpt-turbo-small-eu
|
||||
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
|
||||
api_key:
|
||||
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/gpt-turbo-small-ca
|
||||
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
|
||||
api_key:
|
||||
rpm: 6
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/gpt-turbo-large
|
||||
api_base: https://openai-france-1234.openai.azure.com/
|
||||
api_key:
|
||||
rpm: 1440
|
||||
|
||||
litellm_settings:
|
||||
drop_params: True
|
||||
set_verbose: True
|
||||
|
||||
general_settings:
|
||||
master_key: sk-1234 # [OPTIONAL] Only use this if you to require all calls to contain this key (Authorization: Bearer sk-1234)
|
||||
|
||||
|
||||
environment_variables:
|
||||
OPENAI_API_KEY: sk-123
|
||||
REPLICATE_API_KEY: sk-cohere-is-okay
|
||||
REDIS_HOST: redis-16337.c322.us-east-1-2.ec2.cloud.redislabs.com
|
||||
REDIS_PORT: "16337"
|
||||
REDIS_PASSWORD:
|
||||
```
|
||||
|
||||
### Config for Multiple Models - GPT-4, Claude-2
|
||||
|
||||
Here's how you can use multiple llms with one proxy `config.yaml`.
|
||||
|
||||
#### Step 1: Setup Config
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: zephyr-alpha # the 1st model is the default on the proxy
|
||||
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
|
||||
model: huggingface/HuggingFaceH4/zephyr-7b-alpha
|
||||
api_base: http://0.0.0.0:8001
|
||||
- model_name: gpt-4
|
||||
litellm_params:
|
||||
model: gpt-4
|
||||
api_key: sk-1233
|
||||
- model_name: claude-2
|
||||
litellm_params:
|
||||
model: claude-2
|
||||
api_key: sk-claude
|
||||
```
|
||||
|
||||
:::info
|
||||
|
||||
The proxy uses the first model in the config as the default model - in this config the default model is `zephyr-alpha`
|
||||
:::
|
||||
|
||||
|
||||
#### Step 2: Start Proxy with config
|
||||
|
||||
```shell
|
||||
$ litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
#### Step 3: Use proxy
|
||||
Curl Command
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:8000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data ' {
|
||||
"model": "zephyr-alpha",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
],
|
||||
}
|
||||
'
|
||||
```
|
||||
|
||||
### Config for Embedding Models - xorbitsai/inference
|
||||
|
||||
Here's how you can use multiple llms with one proxy `config.yaml`.
|
||||
Here is how [LiteLLM calls OpenAI Compatible Embedding models](https://docs.litellm.ai/docs/embedding/supported_embedding#openai-compatible-embedding-models)
|
||||
|
||||
#### Config
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: custom_embedding_model
|
||||
litellm_params:
|
||||
model: openai/custom_embedding # the `openai/` prefix tells litellm it's openai compatible
|
||||
api_base: http://0.0.0.0:8000/
|
||||
- model_name: custom_embedding_model
|
||||
litellm_params:
|
||||
model: openai/custom_embedding # the `openai/` prefix tells litellm it's openai compatible
|
||||
api_base: http://0.0.0.0:8001/
|
||||
```
|
||||
|
||||
Run the proxy using this config
|
||||
```shell
|
||||
$ litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
### Save Model-specific params (API Base, API Keys, Temperature, Headers etc.)
|
||||
You can use the config to save model-specific information like api_base, api_key, temperature, max_tokens, etc.
|
||||
|
||||
**Step 1**: Create a `config.yaml` file
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-4-team1
|
||||
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
|
||||
model: azure/chatgpt-v-2
|
||||
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
|
||||
api_version: "2023-05-15"
|
||||
azure_ad_token: eyJ0eXAiOiJ
|
||||
- model_name: gpt-4-team2
|
||||
litellm_params:
|
||||
model: azure/gpt-4
|
||||
api_key: sk-123
|
||||
api_base: https://openai-gpt-4-test-v-2.openai.azure.com/
|
||||
- model_name: mistral-7b
|
||||
litellm_params:
|
||||
model: ollama/mistral
|
||||
api_base: your_ollama_api_base
|
||||
headers: {
|
||||
"HTTP-Referer": "litellm.ai",
|
||||
"X-Title": "LiteLLM Server"
|
||||
}
|
||||
```
|
||||
|
||||
**Step 2**: Start server with config
|
||||
|
||||
```shell
|
||||
$ litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
### Load API Keys from Vault
|
||||
|
||||
If you have secrets saved in Azure Vault, etc. and don't want to expose them in the config.yaml, here's how to load model-specific keys from the environment.
|
||||
|
||||
```python
|
||||
os.environ["AZURE_NORTH_AMERICA_API_KEY"] = "your-azure-api-key"
|
||||
```
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-4-team1
|
||||
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
|
||||
model: azure/chatgpt-v-2
|
||||
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
|
||||
api_version: "2023-05-15"
|
||||
api_key: os.environ/AZURE_NORTH_AMERICA_API_KEY
|
||||
```
|
||||
|
||||
[**See Code**](https://github.com/BerriAI/litellm/blob/c12d6c3fe80e1b5e704d9846b246c059defadce7/litellm/utils.py#L2366)
|
||||
|
||||
s/o to [@David Manouchehri](https://www.linkedin.com/in/davidmanouchehri/) for helping with this.
|
||||
|
||||
### Config for setting Model Aliases
|
||||
|
||||
Set a model alias for your deployments.
|
||||
|
||||
In the `config.yaml` the model_name parameter is the user-facing name to use for your deployment.
|
||||
|
||||
In the config below requests with `model=gpt-4` will route to `ollama/llama2`
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: text-davinci-003
|
||||
litellm_params:
|
||||
model: ollama/zephyr
|
||||
- model_name: gpt-4
|
||||
litellm_params:
|
||||
model: ollama/llama2
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: ollama/llama2
|
||||
```
|
||||
|
||||
### Set Custom Prompt Templates
|
||||
|
||||
LiteLLM by default checks if a model has a [prompt template and applies it](./completion/prompt_formatting.md) (e.g. if a huggingface model has a saved chat template in it's tokenizer_config.json). However, you can also set a custom prompt template on your proxy in the `config.yaml`:
|
||||
|
||||
**Step 1**: Save your prompt template in a `config.yaml`
|
||||
```yaml
|
||||
# Model-specific parameters
|
||||
model_list:
|
||||
- model_name: mistral-7b # model alias
|
||||
litellm_params: # actual params for litellm.completion()
|
||||
model: "huggingface/mistralai/Mistral-7B-Instruct-v0.1"
|
||||
api_base: "<your-api-base>"
|
||||
api_key: "<your-api-key>" # [OPTIONAL] for hf inference endpoints
|
||||
initial_prompt_value: "\n"
|
||||
roles: {"system":{"pre_message":"<|im_start|>system\n", "post_message":"<|im_end|>"}, "assistant":{"pre_message":"<|im_start|>assistant\n","post_message":"<|im_end|>"}, "user":{"pre_message":"<|im_start|>user\n","post_message":"<|im_end|>"}}
|
||||
final_prompt_value: "\n"
|
||||
bos_token: "<s>"
|
||||
eos_token: "</s>"
|
||||
max_tokens: 4096
|
||||
```
|
||||
|
||||
**Step 2**: Start server with config
|
||||
|
||||
```shell
|
||||
$ litellm --config /path/to/config.yaml
|
||||
```
|
0
docs/my-website/docs/proxy/cost_tracking.md
Normal file
0
docs/my-website/docs/proxy/cost_tracking.md
Normal file
5
docs/my-website/docs/proxy/deploy.md
Normal file
5
docs/my-website/docs/proxy/deploy.md
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Deploying LiteLLM Proxy
|
||||
|
||||
### Deploy on Render https://render.com/
|
||||
|
||||
<iframe width="840" height="500" src="https://www.loom.com/embed/805964b3c8384b41be180a61442389a3" frameborder="0" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe>
|
111
docs/my-website/docs/proxy/load_balancing.md
Normal file
111
docs/my-website/docs/proxy/load_balancing.md
Normal file
|
@ -0,0 +1,111 @@
|
|||
|
||||
# Load Balancing - Multiple Instances of 1 model
|
||||
Use this config to load balance between multiple instances of the same model. The proxy will handle routing requests (using LiteLLM's Router). **Set `rpm` in the config if you want maximize throughput**
|
||||
|
||||
#### Example config
|
||||
requests with `model=gpt-3.5-turbo` will be routed across multiple instances of `azure/gpt-3.5-turbo`
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/gpt-turbo-small-eu
|
||||
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
|
||||
api_key:
|
||||
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/gpt-turbo-small-ca
|
||||
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
|
||||
api_key:
|
||||
rpm: 6
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/gpt-turbo-large
|
||||
api_base: https://openai-france-1234.openai.azure.com/
|
||||
api_key:
|
||||
rpm: 1440
|
||||
```
|
||||
|
||||
#### Step 2: Start Proxy with config
|
||||
|
||||
```shell
|
||||
$ litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
#### Step 3: Use proxy
|
||||
Curl Command
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:8000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data ' {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
],
|
||||
}
|
||||
'
|
||||
```
|
||||
|
||||
### Fallbacks + Cooldowns + Retries + Timeouts
|
||||
|
||||
If a call fails after num_retries, fall back to another model group.
|
||||
|
||||
If the error is a context window exceeded error, fall back to a larger model group (if given).
|
||||
|
||||
[**See Code**](https://github.com/BerriAI/litellm/blob/main/litellm/router.py)
|
||||
|
||||
**Set via config**
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: zephyr-beta
|
||||
litellm_params:
|
||||
model: huggingface/HuggingFaceH4/zephyr-7b-beta
|
||||
api_base: http://0.0.0.0:8001
|
||||
- model_name: zephyr-beta
|
||||
litellm_params:
|
||||
model: huggingface/HuggingFaceH4/zephyr-7b-beta
|
||||
api_base: http://0.0.0.0:8002
|
||||
- model_name: zephyr-beta
|
||||
litellm_params:
|
||||
model: huggingface/HuggingFaceH4/zephyr-7b-beta
|
||||
api_base: http://0.0.0.0:8003
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: gpt-3.5-turbo
|
||||
api_key: <my-openai-key>
|
||||
- model_name: gpt-3.5-turbo-16k
|
||||
litellm_params:
|
||||
model: gpt-3.5-turbo-16k
|
||||
api_key: <my-openai-key>
|
||||
|
||||
litellm_settings:
|
||||
num_retries: 3 # retry call 3 times on each model_name (e.g. zephyr-beta)
|
||||
request_timeout: 10 # raise Timeout error if call takes longer than 10s
|
||||
fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo"]}] # fallback to gpt-3.5-turbo if call fails num_retries
|
||||
context_window_fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}] # fallback to gpt-3.5-turbo-16k if context window error
|
||||
allowed_fails: 3 # cooldown model if it fails > 1 call in a minute.
|
||||
```
|
||||
|
||||
**Set dynamically**
|
||||
|
||||
```bash
|
||||
curl --location 'http://0.0.0.0:8000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data ' {
|
||||
"model": "zephyr-beta",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
],
|
||||
"fallbacks": [{"zephyr-beta": ["gpt-3.5-turbo"]}],
|
||||
"context_window_fallbacks": [{"zephyr-beta": ["gpt-3.5-turbo"]}],
|
||||
"num_retries": 2,
|
||||
"request_timeout": 10
|
||||
}
|
||||
'
|
||||
```
|
191
docs/my-website/docs/proxy/logging.md
Normal file
191
docs/my-website/docs/proxy/logging.md
Normal file
|
@ -0,0 +1,191 @@
|
|||
# Logging - OpenTelemetry, Langfuse, ElasticSearch
|
||||
## Logging Proxy Input/Output - OpenTelemetry
|
||||
|
||||
### Step 1 Start OpenTelemetry Collecter Docker Container
|
||||
This container sends logs to your selected destination
|
||||
|
||||
#### Install OpenTelemetry Collecter Docker Image
|
||||
```shell
|
||||
docker pull otel/opentelemetry-collector:0.90.0
|
||||
docker run -p 127.0.0.1:4317:4317 -p 127.0.0.1:55679:55679 otel/opentelemetry-collector:0.90.0
|
||||
```
|
||||
|
||||
#### Set Destination paths on OpenTelemetry Collecter
|
||||
|
||||
Here's the OpenTelemetry yaml config to use with Elastic Search
|
||||
```yaml
|
||||
receivers:
|
||||
otlp:
|
||||
protocols:
|
||||
grpc:
|
||||
endpoint: 0.0.0.0:4317
|
||||
|
||||
processors:
|
||||
batch:
|
||||
timeout: 1s
|
||||
send_batch_size: 1024
|
||||
|
||||
exporters:
|
||||
logging:
|
||||
loglevel: debug
|
||||
otlphttp/elastic:
|
||||
endpoint: "<your elastic endpoint>"
|
||||
headers:
|
||||
Authorization: "Bearer <elastic api key>"
|
||||
|
||||
service:
|
||||
pipelines:
|
||||
metrics:
|
||||
receivers: [otlp]
|
||||
exporters: [logging, otlphttp/elastic]
|
||||
traces:
|
||||
receivers: [otlp]
|
||||
exporters: [logging, otlphttp/elastic]
|
||||
logs:
|
||||
receivers: [otlp]
|
||||
exporters: [logging,otlphttp/elastic]
|
||||
```
|
||||
|
||||
#### Start the OpenTelemetry container with config
|
||||
Run the following command to start your docker container. We pass `otel_config.yaml` from the previous step
|
||||
|
||||
```shell
|
||||
docker run -p 4317:4317 \
|
||||
-v $(pwd)/otel_config.yaml:/etc/otel-collector-config.yaml \
|
||||
otel/opentelemetry-collector:latest \
|
||||
--config=/etc/otel-collector-config.yaml
|
||||
```
|
||||
|
||||
### Step 2 Configure LiteLLM proxy to log on OpenTelemetry
|
||||
|
||||
#### Pip install opentelemetry
|
||||
```shell
|
||||
pip install opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp -U
|
||||
```
|
||||
|
||||
#### Set (OpenTelemetry) `otel=True` on the proxy `config.yaml`
|
||||
**Example config.yaml**
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: azure/gpt-turbo-small-eu
|
||||
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
|
||||
api_key:
|
||||
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
|
||||
|
||||
general_settings:
|
||||
otel: True # set OpenTelemetry=True, on litellm Proxy
|
||||
|
||||
```
|
||||
|
||||
#### Set OTEL collector endpoint
|
||||
LiteLLM will read the `OTEL_ENDPOINT` environment variable to send data to your OTEL collector
|
||||
|
||||
```python
|
||||
os.environ['OTEL_ENDPOINT'] # defauls to 127.0.0.1:4317 if not provided
|
||||
```
|
||||
|
||||
#### Start LiteLLM Proxy
|
||||
```shell
|
||||
litellm -config config.yaml
|
||||
```
|
||||
|
||||
#### Run a test request to Proxy
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:8000/chat/completions' \
|
||||
--header 'Authorization: Bearer sk-1244' \
|
||||
--data ' {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "request from LiteLLM testing"
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
#### Test & View Logs on OpenTelemetry Collecter
|
||||
On successfull logging you should be able to see this log on your `OpenTelemetry Collecter` Docker Container
|
||||
```shell
|
||||
Events:
|
||||
SpanEvent #0
|
||||
-> Name: LiteLLM: Request Input
|
||||
-> Timestamp: 2023-12-02 05:05:53.71063 +0000 UTC
|
||||
-> DroppedAttributesCount: 0
|
||||
-> Attributes::
|
||||
-> type: Str(http)
|
||||
-> asgi: Str({'version': '3.0', 'spec_version': '2.3'})
|
||||
-> http_version: Str(1.1)
|
||||
-> server: Str(('127.0.0.1', 8000))
|
||||
-> client: Str(('127.0.0.1', 62796))
|
||||
-> scheme: Str(http)
|
||||
-> method: Str(POST)
|
||||
-> root_path: Str()
|
||||
-> path: Str(/chat/completions)
|
||||
-> raw_path: Str(b'/chat/completions')
|
||||
-> query_string: Str(b'')
|
||||
-> headers: Str([(b'host', b'0.0.0.0:8000'), (b'user-agent', b'curl/7.88.1'), (b'accept', b'*/*'), (b'authorization', b'Bearer sk-1244'), (b'content-length', b'147'), (b'content-type', b'application/x-www-form-urlencoded')])
|
||||
-> state: Str({})
|
||||
-> app: Str(<fastapi.applications.FastAPI object at 0x1253dd960>)
|
||||
-> fastapi_astack: Str(<contextlib.AsyncExitStack object at 0x127c8b7c0>)
|
||||
-> router: Str(<fastapi.routing.APIRouter object at 0x1253dda50>)
|
||||
-> endpoint: Str(<function chat_completion at 0x1254383a0>)
|
||||
-> path_params: Str({})
|
||||
-> route: Str(APIRoute(path='/chat/completions', name='chat_completion', methods=['POST']))
|
||||
SpanEvent #1
|
||||
-> Name: LiteLLM: Request Headers
|
||||
-> Timestamp: 2023-12-02 05:05:53.710652 +0000 UTC
|
||||
-> DroppedAttributesCount: 0
|
||||
-> Attributes::
|
||||
-> host: Str(0.0.0.0:8000)
|
||||
-> user-agent: Str(curl/7.88.1)
|
||||
-> accept: Str(*/*)
|
||||
-> authorization: Str(Bearer sk-1244)
|
||||
-> content-length: Str(147)
|
||||
-> content-type: Str(application/x-www-form-urlencoded)
|
||||
SpanEvent #2
|
||||
```
|
||||
|
||||
### View Log on Elastic Search
|
||||
Here's the log view on Elastic Search. You can see the request `input`, `output` and `headers`
|
||||
|
||||
<Image img={require('../../img/elastic_otel.png')} />
|
||||
|
||||
## Logging Proxy Input/Output - Langfuse
|
||||
We will use the `--config` to set `litellm.success_callback = ["langfuse"]` this will log all successfull LLM calls to langfuse
|
||||
|
||||
**Step 1** Install langfuse
|
||||
|
||||
```shell
|
||||
pip install langfuse
|
||||
```
|
||||
|
||||
**Step 2**: Create a `config.yaml` file and set `litellm_settings`: `success_callback`
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: gpt-3.5-turbo
|
||||
litellm_settings:
|
||||
success_callback: ["langfuse"]
|
||||
```
|
||||
|
||||
**Step 3**: Start the proxy, make a test request
|
||||
|
||||
Start proxy
|
||||
```shell
|
||||
litellm --config config.yaml --debug
|
||||
```
|
||||
|
||||
Test Request
|
||||
```
|
||||
litellm --test
|
||||
```
|
||||
|
||||
Expected output on Langfuse
|
||||
|
||||
<Image img={require('../../img/langfuse_small.png')} />
|
9
docs/my-website/docs/proxy/perf.md
Normal file
9
docs/my-website/docs/proxy/perf.md
Normal file
|
@ -0,0 +1,9 @@
|
|||
# LiteLLM Proxy Performance
|
||||
|
||||
### Throughput - 30% Increase
|
||||
LiteLLM proxy + Load Balancer gives **30% increase** in throughput compared to Raw OpenAI API
|
||||
<Image img={require('../../img/throughput.png')} />
|
||||
|
||||
### Latency Added - 0.00325 seconds
|
||||
LiteLLM proxy adds **0.00325 seconds** latency as compared to using the Raw OpenAI API
|
||||
<Image img={require('../../img/latency.png')} />
|
444
docs/my-website/docs/proxy/quick_start.md
Normal file
444
docs/my-website/docs/proxy/quick_start.md
Normal file
|
@ -0,0 +1,444 @@
|
|||
import Image from '@theme/IdealImage';
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
# Quick Start
|
||||
|
||||
LiteLLM Server manages:
|
||||
|
||||
* **Unified Interface**: Calling 100+ LLMs [Huggingface/Bedrock/TogetherAI/etc.](#other-supported-models) in the OpenAI `ChatCompletions` & `Completions` format
|
||||
* **Load Balancing**: between [Multiple Models](#multiple-models---quick-start) + [Deployments of the same model](#multiple-instances-of-1-model) - LiteLLM proxy can handle 1.5k+ requests/second during load tests.
|
||||
* **Cost tracking**: Authentication & Spend Tracking [Virtual Keys](#managing-auth---virtual-keys)
|
||||
|
||||
[**See LiteLLM Proxy code**](https://github.com/BerriAI/litellm/tree/main/litellm/proxy)
|
||||
|
||||
|
||||
View all the supported args for the Proxy CLI [here](https://docs.litellm.ai/docs/simple_proxy#proxy-cli-arguments)
|
||||
|
||||
```shell
|
||||
$ pip install litellm[proxy]
|
||||
```
|
||||
|
||||
```shell
|
||||
$ litellm --model huggingface/bigcode/starcoder
|
||||
|
||||
#INFO: Proxy running on http://0.0.0.0:8000
|
||||
```
|
||||
|
||||
### Test
|
||||
In a new shell, run, this will make an `openai.chat.completions` request. Ensure you're using openai v1.0.0+
|
||||
```shell
|
||||
litellm --test
|
||||
```
|
||||
|
||||
This will now automatically route any requests for gpt-3.5-turbo to bigcode starcoder, hosted on huggingface inference endpoints.
|
||||
|
||||
### Using LiteLLM Proxy - Curl Request, OpenAI Package
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="Curl" label="Curl Request">
|
||||
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:8000/chat/completions' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data ' {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what llm are you"
|
||||
}
|
||||
],
|
||||
}
|
||||
'
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="openai" label="OpenAI v1.0.0+">
|
||||
|
||||
```python
|
||||
import openai
|
||||
client = openai.OpenAI(
|
||||
api_key="anything",
|
||||
base_url="http://0.0.0.0:8000"
|
||||
)
|
||||
|
||||
# request sent to model set on litellm proxy, `litellm --model`
|
||||
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "this is a test request, write a short poem"
|
||||
}
|
||||
])
|
||||
|
||||
print(response)
|
||||
|
||||
```
|
||||
</TabItem>
|
||||
|
||||
</Tabs>
|
||||
|
||||
### Server Endpoints
|
||||
- POST `/chat/completions` - chat completions endpoint to call 100+ LLMs
|
||||
- POST `/completions` - completions endpoint
|
||||
- POST `/embeddings` - embedding endpoint for Azure, OpenAI, Huggingface endpoints
|
||||
- GET `/models` - available models on server
|
||||
- POST `/key/generate` - generate a key to access the proxy
|
||||
|
||||
### Supported LLMs
|
||||
All LiteLLM supported LLMs are supported on the Proxy. Seel all [supported llms](https://docs.litellm.ai/docs/providers)
|
||||
<Tabs>
|
||||
<TabItem value="bedrock" label="AWS Bedrock">
|
||||
|
||||
```shell
|
||||
$ export AWS_ACCESS_KEY_ID=
|
||||
$ export AWS_REGION_NAME=
|
||||
$ export AWS_SECRET_ACCESS_KEY=
|
||||
```
|
||||
|
||||
```shell
|
||||
$ litellm --model bedrock/anthropic.claude-v2
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="azure" label="Azure OpenAI">
|
||||
|
||||
```shell
|
||||
$ export AZURE_API_KEY=my-api-key
|
||||
$ export AZURE_API_BASE=my-api-base
|
||||
```
|
||||
```
|
||||
$ litellm --model azure/my-deployment-name
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="openai-proxy" label="OpenAI">
|
||||
|
||||
```shell
|
||||
$ export OPENAI_API_KEY=my-api-key
|
||||
```
|
||||
|
||||
```shell
|
||||
$ litellm --model gpt-3.5-turbo
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="huggingface" label="Huggingface (TGI) Deployed">
|
||||
|
||||
```shell
|
||||
$ export HUGGINGFACE_API_KEY=my-api-key #[OPTIONAL]
|
||||
```
|
||||
```shell
|
||||
$ litellm --model huggingface/<your model name> --api_base https://k58ory32yinf1ly0.us-east-1.aws.endpoints.huggingface.cloud
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="huggingface-local" label="Huggingface (TGI) Local">
|
||||
|
||||
```shell
|
||||
$ litellm --model huggingface/<your model name> --api_base http://0.0.0.0:8001
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="aws-sagemaker" label="AWS Sagemaker">
|
||||
|
||||
```shell
|
||||
export AWS_ACCESS_KEY_ID=
|
||||
export AWS_REGION_NAME=
|
||||
export AWS_SECRET_ACCESS_KEY=
|
||||
```
|
||||
|
||||
```shell
|
||||
$ litellm --model sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="anthropic" label="Anthropic">
|
||||
|
||||
```shell
|
||||
$ export ANTHROPIC_API_KEY=my-api-key
|
||||
```
|
||||
```shell
|
||||
$ litellm --model claude-instant-1
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="vllm-local" label="VLLM">
|
||||
Assuming you're running vllm locally
|
||||
|
||||
```shell
|
||||
$ litellm --model vllm/facebook/opt-125m
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="together_ai" label="TogetherAI">
|
||||
|
||||
```shell
|
||||
$ export TOGETHERAI_API_KEY=my-api-key
|
||||
```
|
||||
```shell
|
||||
$ litellm --model together_ai/lmsys/vicuna-13b-v1.5-16k
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="replicate" label="Replicate">
|
||||
|
||||
```shell
|
||||
$ export REPLICATE_API_KEY=my-api-key
|
||||
```
|
||||
```shell
|
||||
$ litellm \
|
||||
--model replicate/meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="petals" label="Petals">
|
||||
|
||||
```shell
|
||||
$ litellm --model petals/meta-llama/Llama-2-70b-chat-hf
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="palm" label="Palm">
|
||||
|
||||
```shell
|
||||
$ export PALM_API_KEY=my-palm-key
|
||||
```
|
||||
```shell
|
||||
$ litellm --model palm/chat-bison
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="ai21" label="AI21">
|
||||
|
||||
```shell
|
||||
$ export AI21_API_KEY=my-api-key
|
||||
```
|
||||
|
||||
```shell
|
||||
$ litellm --model j2-light
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="cohere" label="Cohere">
|
||||
|
||||
```shell
|
||||
$ export COHERE_API_KEY=my-api-key
|
||||
```
|
||||
|
||||
```shell
|
||||
$ litellm --model command-nightly
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
|
||||
</Tabs>
|
||||
|
||||
|
||||
## Using with OpenAI compatible projects
|
||||
Set `base_url` to the LiteLLM Proxy server
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="openai" label="OpenAI v1.0.0+">
|
||||
|
||||
```python
|
||||
import openai
|
||||
client = openai.OpenAI(
|
||||
api_key="anything",
|
||||
base_url="http://0.0.0.0:8000"
|
||||
)
|
||||
|
||||
# request sent to model set on litellm proxy, `litellm --model`
|
||||
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "this is a test request, write a short poem"
|
||||
}
|
||||
])
|
||||
|
||||
print(response)
|
||||
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="librechat" label="LibreChat">
|
||||
|
||||
#### Start the LiteLLM proxy
|
||||
```shell
|
||||
litellm --model gpt-3.5-turbo
|
||||
|
||||
#INFO: Proxy running on http://0.0.0.0:8000
|
||||
```
|
||||
|
||||
#### 1. Clone the repo
|
||||
|
||||
```shell
|
||||
git clone https://github.com/danny-avila/LibreChat.git
|
||||
```
|
||||
|
||||
|
||||
#### 2. Modify Librechat's `docker-compose.yml`
|
||||
LiteLLM Proxy is running on port `8000`, set `8000` as the proxy below
|
||||
```yaml
|
||||
OPENAI_REVERSE_PROXY=http://host.docker.internal:8000/v1/chat/completions
|
||||
```
|
||||
|
||||
#### 3. Save fake OpenAI key in Librechat's `.env`
|
||||
|
||||
Copy Librechat's `.env.example` to `.env` and overwrite the default OPENAI_API_KEY (by default it requires the user to pass a key).
|
||||
```env
|
||||
OPENAI_API_KEY=sk-1234
|
||||
```
|
||||
|
||||
#### 4. Run LibreChat:
|
||||
```shell
|
||||
docker compose up
|
||||
```
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="continue-dev" label="ContinueDev">
|
||||
|
||||
Continue-Dev brings ChatGPT to VSCode. See how to [install it here](https://continue.dev/docs/quickstart).
|
||||
|
||||
In the [config.py](https://continue.dev/docs/reference/Models/openai) set this as your default model.
|
||||
```python
|
||||
default=OpenAI(
|
||||
api_key="IGNORED",
|
||||
model="fake-model-name",
|
||||
context_length=2048, # customize if needed for your model
|
||||
api_base="http://localhost:8000" # your proxy server url
|
||||
),
|
||||
```
|
||||
|
||||
Credits [@vividfog](https://github.com/jmorganca/ollama/issues/305#issuecomment-1751848077) for this tutorial.
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="aider" label="Aider">
|
||||
|
||||
```shell
|
||||
$ pip install aider
|
||||
|
||||
$ aider --openai-api-base http://0.0.0.0:8000 --openai-api-key fake-key
|
||||
```
|
||||
</TabItem>
|
||||
<TabItem value="autogen" label="AutoGen">
|
||||
|
||||
```python
|
||||
pip install pyautogen
|
||||
```
|
||||
|
||||
```python
|
||||
from autogen import AssistantAgent, UserProxyAgent, oai
|
||||
config_list=[
|
||||
{
|
||||
"model": "my-fake-model",
|
||||
"api_base": "http://localhost:8000", #litellm compatible endpoint
|
||||
"api_type": "open_ai",
|
||||
"api_key": "NULL", # just a placeholder
|
||||
}
|
||||
]
|
||||
|
||||
response = oai.Completion.create(config_list=config_list, prompt="Hi")
|
||||
print(response) # works fine
|
||||
|
||||
llm_config={
|
||||
"config_list": config_list,
|
||||
}
|
||||
|
||||
assistant = AssistantAgent("assistant", llm_config=llm_config)
|
||||
user_proxy = UserProxyAgent("user_proxy")
|
||||
user_proxy.initiate_chat(assistant, message="Plot a chart of META and TESLA stock price change YTD.", config_list=config_list)
|
||||
```
|
||||
|
||||
Credits [@victordibia](https://github.com/microsoft/autogen/issues/45#issuecomment-1749921972) for this tutorial.
|
||||
</TabItem>
|
||||
|
||||
<TabItem value="guidance" label="guidance">
|
||||
A guidance language for controlling large language models.
|
||||
https://github.com/guidance-ai/guidance
|
||||
|
||||
**NOTE:** Guidance sends additional params like `stop_sequences` which can cause some models to fail if they don't support it.
|
||||
|
||||
**Fix**: Start your proxy using the `--drop_params` flag
|
||||
|
||||
```shell
|
||||
litellm --model ollama/codellama --temperature 0.3 --max_tokens 2048 --drop_params
|
||||
```
|
||||
|
||||
```python
|
||||
import guidance
|
||||
|
||||
# set api_base to your proxy
|
||||
# set api_key to anything
|
||||
gpt4 = guidance.llms.OpenAI("gpt-4", api_base="http://0.0.0.0:8000", api_key="anything")
|
||||
|
||||
experts = guidance('''
|
||||
{{#system~}}
|
||||
You are a helpful and terse assistant.
|
||||
{{~/system}}
|
||||
|
||||
{{#user~}}
|
||||
I want a response to the following question:
|
||||
{{query}}
|
||||
Name 3 world-class experts (past or present) who would be great at answering this?
|
||||
Don't answer the question yet.
|
||||
{{~/user}}
|
||||
|
||||
{{#assistant~}}
|
||||
{{gen 'expert_names' temperature=0 max_tokens=300}}
|
||||
{{~/assistant}}
|
||||
''', llm=gpt4)
|
||||
|
||||
result = experts(query='How can I be more productive?')
|
||||
print(result)
|
||||
```
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
## Debugging Proxy
|
||||
Run the proxy with `--debug` to easily view debug logs
|
||||
```shell
|
||||
litellm --model gpt-3.5-turbo --debug
|
||||
```
|
||||
|
||||
When making requests you should see the POST request sent by LiteLLM to the LLM on the Terminal output
|
||||
```shell
|
||||
POST Request Sent from LiteLLM:
|
||||
curl -X POST \
|
||||
https://api.openai.com/v1/chat/completions \
|
||||
-H 'content-type: application/json' -H 'Authorization: Bearer sk-qnWGUIW9****************************************' \
|
||||
-d '{"model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": "this is a test request, write a short poem"}]}'
|
||||
```
|
||||
|
||||
## Health Check LLMs on Proxy
|
||||
Use this to health check all LLMs defined in your config.yaml
|
||||
#### Request
|
||||
```shell
|
||||
curl --location 'http://0.0.0.0:8000/health'
|
||||
```
|
||||
|
||||
You can also run `litellm -health` it makes a `get` request to `http://0.0.0.0:8000/health` for you
|
||||
```
|
||||
litellm --health
|
||||
```
|
||||
#### Response
|
||||
```shell
|
||||
{
|
||||
"healthy_endpoints": [
|
||||
{
|
||||
"model": "azure/gpt-35-turbo",
|
||||
"api_base": "https://my-endpoint-canada-berri992.openai.azure.com/"
|
||||
},
|
||||
{
|
||||
"model": "azure/gpt-35-turbo",
|
||||
"api_base": "https://my-endpoint-europe-berri-992.openai.azure.com/"
|
||||
}
|
||||
],
|
||||
"unhealthy_endpoints": [
|
||||
{
|
||||
"model": "azure/gpt-35-turbo",
|
||||
"api_base": "https://openai-france-1234.openai.azure.com/"
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
138
docs/my-website/docs/proxy/virtual_keys.md
Normal file
138
docs/my-website/docs/proxy/virtual_keys.md
Normal file
|
@ -0,0 +1,138 @@
|
|||
|
||||
# Cost Tracking & Virtual Keys
|
||||
|
||||
Grant other's temporary access to your proxy, with keys that expire after a set duration.
|
||||
|
||||
Requirements:
|
||||
|
||||
- Need to a postgres database (e.g. [Supabase](https://supabase.com/))
|
||||
|
||||
You can then generate temporary keys by hitting the `/key/generate` endpoint.
|
||||
|
||||
[**See code**](https://github.com/BerriAI/litellm/blob/7a669a36d2689c7f7890bc9c93e04ff3c2641299/litellm/proxy/proxy_server.py#L672)
|
||||
|
||||
**Step 1: Save postgres db url**
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: gpt-4
|
||||
litellm_params:
|
||||
model: ollama/llama2
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: ollama/llama2
|
||||
|
||||
general_settings:
|
||||
master_key: sk-1234 # [OPTIONAL] if set all calls to proxy will require either this key or a valid generated token
|
||||
database_url: "postgresql://<user>:<password>@<host>:<port>/<dbname>"
|
||||
```
|
||||
|
||||
**Step 2: Start litellm**
|
||||
|
||||
```shell
|
||||
litellm --config /path/to/config.yaml
|
||||
```
|
||||
|
||||
**Step 3: Generate temporary keys**
|
||||
|
||||
```shell
|
||||
curl 'http://0.0.0.0:8000/key/generate' \
|
||||
--h 'Authorization: Bearer sk-1234' \
|
||||
--d '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m"}'
|
||||
```
|
||||
|
||||
- `models`: *list or null (optional)* - Specify the models a token has access too. If null, then token has access to all models on server.
|
||||
|
||||
- `duration`: *str or null (optional)* Specify the length of time the token is valid for. If null, default is set to 1 hour. You can set duration as seconds ("30s"), minutes ("30m"), hours ("30h"), days ("30d").
|
||||
|
||||
Expected response:
|
||||
|
||||
```python
|
||||
{
|
||||
"key": "sk-kdEXbIqZRwEeEiHwdg7sFA", # Bearer token
|
||||
"expires": "2023-11-19T01:38:25.838000+00:00" # datetime object
|
||||
}
|
||||
```
|
||||
|
||||
### Managing Auth - Upgrade/Downgrade Models
|
||||
|
||||
If a user is expected to use a given model (i.e. gpt3-5), and you want to:
|
||||
|
||||
- try to upgrade the request (i.e. GPT4)
|
||||
- or downgrade it (i.e. Mistral)
|
||||
- OR rotate the API KEY (i.e. open AI)
|
||||
- OR access the same model through different end points (i.e. openAI vs openrouter vs Azure)
|
||||
|
||||
Here's how you can do that:
|
||||
|
||||
**Step 1: Create a model group in config.yaml (save model name, api keys, etc.)**
|
||||
|
||||
```yaml
|
||||
model_list:
|
||||
- model_name: my-free-tier
|
||||
litellm_params:
|
||||
model: huggingface/HuggingFaceH4/zephyr-7b-beta
|
||||
api_base: http://0.0.0.0:8001
|
||||
- model_name: my-free-tier
|
||||
litellm_params:
|
||||
model: huggingface/HuggingFaceH4/zephyr-7b-beta
|
||||
api_base: http://0.0.0.0:8002
|
||||
- model_name: my-free-tier
|
||||
litellm_params:
|
||||
model: huggingface/HuggingFaceH4/zephyr-7b-beta
|
||||
api_base: http://0.0.0.0:8003
|
||||
- model_name: my-paid-tier
|
||||
litellm_params:
|
||||
model: gpt-4
|
||||
api_key: my-api-key
|
||||
```
|
||||
|
||||
**Step 2: Generate a user key - enabling them access to specific models, custom model aliases, etc.**
|
||||
|
||||
```bash
|
||||
curl -X POST "https://0.0.0.0:8000/key/generate" \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"models": ["my-free-tier"],
|
||||
"aliases": {"gpt-3.5-turbo": "my-free-tier"},
|
||||
"duration": "30min"
|
||||
}'
|
||||
```
|
||||
|
||||
- **How to upgrade / downgrade request?** Change the alias mapping
|
||||
- **How are routing between diff keys/api bases done?** litellm handles this by shuffling between different models in the model list with the same model_name. [**See Code**](https://github.com/BerriAI/litellm/blob/main/litellm/router.py)
|
||||
|
||||
### Managing Auth - Tracking Spend
|
||||
|
||||
You can get spend for a key by using the `/key/info` endpoint.
|
||||
|
||||
```bash
|
||||
curl 'http://0.0.0.0:8000/key/info?key=<user-key>' \
|
||||
-X GET \
|
||||
-H 'Authorization: Bearer <your-master-key>'
|
||||
```
|
||||
|
||||
This is automatically updated (in USD) when calls are made to /completions, /chat/completions, /embeddings using litellm's completion_cost() function. [**See Code**](https://github.com/BerriAI/litellm/blob/1a6ea20a0bb66491968907c2bfaabb7fe45fc064/litellm/utils.py#L1654).
|
||||
|
||||
**Sample response**
|
||||
|
||||
```python
|
||||
{
|
||||
"key": "sk-tXL0wt5-lOOVK9sfY2UacA",
|
||||
"info": {
|
||||
"token": "sk-tXL0wt5-lOOVK9sfY2UacA",
|
||||
"spend": 0.0001065,
|
||||
"expires": "2023-11-24T23:19:11.131000Z",
|
||||
"models": [
|
||||
"gpt-3.5-turbo",
|
||||
"gpt-4",
|
||||
"claude-2"
|
||||
],
|
||||
"aliases": {
|
||||
"mistral-7b": "gpt-3.5-turbo"
|
||||
},
|
||||
"config": {}
|
||||
}
|
||||
}
|
||||
```
|
|
@ -85,7 +85,26 @@ const sidebars = {
|
|||
"providers/petals",
|
||||
]
|
||||
},
|
||||
"simple_proxy",
|
||||
{
|
||||
type: "category",
|
||||
label: "💥 OpenAI Proxy",
|
||||
link: {
|
||||
type: 'generated-index',
|
||||
title: '💥 OpenAI Proxy Server',
|
||||
description: `Proxy Server to call 100+ LLMs in a unified interface, load balance deployments, track costs per user`,
|
||||
slug: '/simple_proxy',
|
||||
},
|
||||
items: [
|
||||
"proxy/quick_start",
|
||||
"proxy/configs",
|
||||
"proxy/load_balancing",
|
||||
"proxy/virtual_keys",
|
||||
"proxy/caching",
|
||||
"proxy/logging",
|
||||
"proxy/cli",
|
||||
"proxy/deploy",
|
||||
]
|
||||
},
|
||||
"routing",
|
||||
"rules",
|
||||
"set_keys",
|
||||
|
@ -107,7 +126,6 @@ const sidebars = {
|
|||
'tutorials/finetuned_chat_gpt',
|
||||
'tutorials/sagemaker_llms',
|
||||
'tutorials/text_completion',
|
||||
// 'tutorials/litellm_Test_Multiple_Providers',
|
||||
"tutorials/first_playground",
|
||||
'tutorials/compare_llms',
|
||||
"tutorials/model_fallbacks",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue