forked from phoenix/litellm-mirror
fix(whisper---handle-openai/azure-vtt-response-format): Fixes https://github.com/BerriAI/litellm/issues/4595
This commit is contained in:
parent
d5564dd81f
commit
298505c47c
10 changed files with 252 additions and 84 deletions
|
@ -348,6 +348,104 @@ class DeepInfraConfig:
|
|||
return optional_params
|
||||
|
||||
|
||||
class GroqConfig:
|
||||
"""
|
||||
Reference: https://deepinfra.com/docs/advanced/openai_api
|
||||
|
||||
The class `DeepInfra` provides configuration for the DeepInfra's Chat Completions API interface. Below are the parameters:
|
||||
"""
|
||||
|
||||
frequency_penalty: Optional[int] = None
|
||||
function_call: Optional[Union[str, dict]] = None
|
||||
functions: Optional[list] = None
|
||||
logit_bias: Optional[dict] = None
|
||||
max_tokens: Optional[int] = None
|
||||
n: Optional[int] = None
|
||||
presence_penalty: Optional[int] = None
|
||||
stop: Optional[Union[str, list]] = None
|
||||
temperature: Optional[int] = None
|
||||
top_p: Optional[int] = None
|
||||
response_format: Optional[dict] = None
|
||||
tools: Optional[list] = None
|
||||
tool_choice: Optional[Union[str, dict]] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
frequency_penalty: Optional[int] = None,
|
||||
function_call: Optional[Union[str, dict]] = None,
|
||||
functions: Optional[list] = None,
|
||||
logit_bias: Optional[dict] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
presence_penalty: Optional[int] = None,
|
||||
stop: Optional[Union[str, list]] = None,
|
||||
temperature: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
response_format: Optional[dict] = None,
|
||||
tools: Optional[list] = None,
|
||||
tool_choice: Optional[Union[str, dict]] = None,
|
||||
) -> None:
|
||||
locals_ = locals().copy()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params_stt(self):
|
||||
return [
|
||||
"prompt",
|
||||
"response_format",
|
||||
"temperature",
|
||||
"language",
|
||||
]
|
||||
|
||||
def get_supported_openai_response_formats_stt(self) -> List[str]:
|
||||
return ["json", "verbose_json", "text"]
|
||||
|
||||
def map_openai_params_stt(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
response_formats = self.get_supported_openai_response_formats_stt()
|
||||
for param, value in non_default_params.items():
|
||||
if param == "response_format":
|
||||
if value in response_formats:
|
||||
optional_params[param] = value
|
||||
else:
|
||||
if litellm.drop_params is True or drop_params is True:
|
||||
pass
|
||||
else:
|
||||
raise litellm.utils.UnsupportedParamsError(
|
||||
message="Groq doesn't support response_format={}. To drop unsupported openai params from the call, set `litellm.drop_params = True`".format(
|
||||
value
|
||||
),
|
||||
status_code=400,
|
||||
)
|
||||
else:
|
||||
optional_params[param] = value
|
||||
return optional_params
|
||||
|
||||
|
||||
class OpenAIConfig:
|
||||
"""
|
||||
Reference: https://platform.openai.com/docs/api-reference/chat/create
|
||||
|
@ -1360,7 +1458,11 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
**data, timeout=timeout # type: ignore
|
||||
)
|
||||
|
||||
stringified_response = response.model_dump()
|
||||
if isinstance(response, BaseModel):
|
||||
stringified_response = response.model_dump()
|
||||
else:
|
||||
stringified_response = TranscriptionResponse(text=response).model_dump()
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=audio_file.name,
|
||||
|
@ -1400,7 +1502,10 @@ class OpenAIChatCompletion(BaseLLM):
|
|||
timeout=timeout,
|
||||
)
|
||||
logging_obj.model_call_details["response_headers"] = headers
|
||||
stringified_response = response.model_dump()
|
||||
if isinstance(response, BaseModel):
|
||||
stringified_response = response.model_dump()
|
||||
else:
|
||||
stringified_response = TranscriptionResponse(text=response).model_dump()
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=audio_file.name,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue