fix(ollama.py): enable parallel ollama completion calls

This commit is contained in:
Krrish Dholakia 2023-12-11 23:18:25 -08:00
parent eb8514ddf6
commit 2c1c75fdf0
3 changed files with 72 additions and 6 deletions

4
.vscode/settings.json vendored Normal file
View file

@ -0,0 +1,4 @@
{
"python.analysis.typeCheckingMode": "off",
"python.analysis.autoImportCompletions": true
}

View file

@ -1,10 +1,12 @@
import requests, types
from email import header
from re import T
from tkinter import N
import requests, types, time
import json
import traceback
from typing import Optional
import litellm
import httpx
import httpx, aiohttp, asyncio
try:
from async_generator import async_generator, yield_ # optional dependency
async_generator_imported = True
@ -115,6 +117,9 @@ def get_ollama_response_stream(
prompt="Why is the sky blue?",
optional_params=None,
logging_obj=None,
acompletion: bool = False,
model_response=None,
encoding=None
):
if api_base.endswith("/api/generate"):
url = api_base
@ -136,8 +141,15 @@ def get_ollama_response_stream(
logging_obj.pre_call(
input=None,
api_key=None,
additional_args={"api_base": url, "complete_input_dict": data},
additional_args={"api_base": url, "complete_input_dict": data, "headers": {}, "acompletion": acompletion,},
)
if acompletion is True:
response = ollama_acompletion(url=url, data=data, model_response=model_response, encoding=encoding, logging_obj=logging_obj)
return response
else:
return ollama_completion_stream(url=url, data=data)
def ollama_completion_stream(url, data):
session = requests.Session()
with session.post(url, json=data, stream=True) as resp:
@ -169,6 +181,52 @@ def get_ollama_response_stream(
traceback.print_exc()
session.close()
async def ollama_acompletion(url, data, model_response, encoding, logging_obj):
try:
timeout = aiohttp.ClientTimeout(total=600) # 10 minutes
async with aiohttp.ClientSession(timeout=timeout) as session:
resp = await session.post(url, json=data)
if resp.status != 200:
text = await resp.text()
raise OllamaError(status_code=resp.status, message=text)
async for line in resp.content.iter_any():
if line:
try:
json_chunk = line.decode("utf-8")
chunks = json_chunk.split("\n")
completion_string = ""
for chunk in chunks:
if chunk.strip() != "":
j = json.loads(chunk)
if "error" in j:
completion_obj = {
"role": "assistant",
"content": "",
"error": j
}
if "response" in j:
completion_obj = {
"role": "assistant",
"content": j["response"],
}
completion_string += completion_obj["content"]
except Exception as e:
traceback.print_exc()
## RESPONSE OBJECT
model_response["choices"][0]["finish_reason"] = "stop"
model_response["choices"][0]["message"]["content"] = completion_string
model_response["created"] = int(time.time())
model_response["model"] = "ollama/" + data['model']
prompt_tokens = len(encoding.encode(data['prompt'])) # type: ignore
completion_tokens = len(encoding.encode(completion_string))
model_response["usage"] = litellm.Usage(prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens)
return model_response
except Exception as e:
traceback.print_exc()
if async_generator_imported:
# ollama implementation
@async_generator

View file

@ -8,6 +8,7 @@
# Thank you ! We ❤️ you! - Krrish & Ishaan
import os, openai, sys, json, inspect, uuid, datetime, threading
from re import T
from typing import Any
from functools import partial
import dotenv, traceback, random, asyncio, time, contextvars
@ -175,7 +176,8 @@ async def acompletion(*args, **kwargs):
or custom_llm_provider == "deepinfra"
or custom_llm_provider == "perplexity"
or custom_llm_provider == "text-completion-openai"
or custom_llm_provider == "huggingface"): # currently implemented aiohttp calls for just azure and openai, soon all.
or custom_llm_provider == "huggingface"
or custom_llm_provider == "ollama"): # currently implemented aiohttp calls for just azure and openai, soon all.
if kwargs.get("stream", False):
response = completion(*args, **kwargs)
else:
@ -1318,7 +1320,9 @@ def completion(
async_generator = ollama.async_get_ollama_response_stream(api_base, model, prompt, optional_params, logging_obj=logging)
return async_generator
generator = ollama.get_ollama_response_stream(api_base, model, prompt, optional_params, logging_obj=logging)
generator = ollama.get_ollama_response_stream(api_base, model, prompt, optional_params, logging_obj=logging, acompletion=acompletion, model_response=model_response, encoding=encoding)
if acompletion is True:
return generator
if optional_params.get("stream", False) == True:
# assume all ollama responses are streamed
response = CustomStreamWrapper(