forked from phoenix/litellm-mirror
fix(ollama.py): enable parallel ollama completion calls
This commit is contained in:
parent
eb8514ddf6
commit
2c1c75fdf0
3 changed files with 72 additions and 6 deletions
4
.vscode/settings.json
vendored
Normal file
4
.vscode/settings.json
vendored
Normal file
|
@ -0,0 +1,4 @@
|
||||||
|
{
|
||||||
|
"python.analysis.typeCheckingMode": "off",
|
||||||
|
"python.analysis.autoImportCompletions": true
|
||||||
|
}
|
|
@ -1,10 +1,12 @@
|
||||||
import requests, types
|
from email import header
|
||||||
|
from re import T
|
||||||
|
from tkinter import N
|
||||||
|
import requests, types, time
|
||||||
import json
|
import json
|
||||||
import traceback
|
import traceback
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
import litellm
|
import litellm
|
||||||
import httpx
|
import httpx, aiohttp, asyncio
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from async_generator import async_generator, yield_ # optional dependency
|
from async_generator import async_generator, yield_ # optional dependency
|
||||||
async_generator_imported = True
|
async_generator_imported = True
|
||||||
|
@ -115,6 +117,9 @@ def get_ollama_response_stream(
|
||||||
prompt="Why is the sky blue?",
|
prompt="Why is the sky blue?",
|
||||||
optional_params=None,
|
optional_params=None,
|
||||||
logging_obj=None,
|
logging_obj=None,
|
||||||
|
acompletion: bool = False,
|
||||||
|
model_response=None,
|
||||||
|
encoding=None
|
||||||
):
|
):
|
||||||
if api_base.endswith("/api/generate"):
|
if api_base.endswith("/api/generate"):
|
||||||
url = api_base
|
url = api_base
|
||||||
|
@ -136,8 +141,15 @@ def get_ollama_response_stream(
|
||||||
logging_obj.pre_call(
|
logging_obj.pre_call(
|
||||||
input=None,
|
input=None,
|
||||||
api_key=None,
|
api_key=None,
|
||||||
additional_args={"api_base": url, "complete_input_dict": data},
|
additional_args={"api_base": url, "complete_input_dict": data, "headers": {}, "acompletion": acompletion,},
|
||||||
)
|
)
|
||||||
|
if acompletion is True:
|
||||||
|
response = ollama_acompletion(url=url, data=data, model_response=model_response, encoding=encoding, logging_obj=logging_obj)
|
||||||
|
return response
|
||||||
|
else:
|
||||||
|
return ollama_completion_stream(url=url, data=data)
|
||||||
|
|
||||||
|
def ollama_completion_stream(url, data):
|
||||||
session = requests.Session()
|
session = requests.Session()
|
||||||
|
|
||||||
with session.post(url, json=data, stream=True) as resp:
|
with session.post(url, json=data, stream=True) as resp:
|
||||||
|
@ -169,6 +181,52 @@ def get_ollama_response_stream(
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
session.close()
|
session.close()
|
||||||
|
|
||||||
|
async def ollama_acompletion(url, data, model_response, encoding, logging_obj):
|
||||||
|
|
||||||
|
try:
|
||||||
|
timeout = aiohttp.ClientTimeout(total=600) # 10 minutes
|
||||||
|
async with aiohttp.ClientSession(timeout=timeout) as session:
|
||||||
|
resp = await session.post(url, json=data)
|
||||||
|
|
||||||
|
if resp.status != 200:
|
||||||
|
text = await resp.text()
|
||||||
|
raise OllamaError(status_code=resp.status, message=text)
|
||||||
|
|
||||||
|
async for line in resp.content.iter_any():
|
||||||
|
if line:
|
||||||
|
try:
|
||||||
|
json_chunk = line.decode("utf-8")
|
||||||
|
chunks = json_chunk.split("\n")
|
||||||
|
completion_string = ""
|
||||||
|
for chunk in chunks:
|
||||||
|
if chunk.strip() != "":
|
||||||
|
j = json.loads(chunk)
|
||||||
|
if "error" in j:
|
||||||
|
completion_obj = {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": "",
|
||||||
|
"error": j
|
||||||
|
}
|
||||||
|
if "response" in j:
|
||||||
|
completion_obj = {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": j["response"],
|
||||||
|
}
|
||||||
|
completion_string += completion_obj["content"]
|
||||||
|
except Exception as e:
|
||||||
|
traceback.print_exc()
|
||||||
|
## RESPONSE OBJECT
|
||||||
|
model_response["choices"][0]["finish_reason"] = "stop"
|
||||||
|
model_response["choices"][0]["message"]["content"] = completion_string
|
||||||
|
model_response["created"] = int(time.time())
|
||||||
|
model_response["model"] = "ollama/" + data['model']
|
||||||
|
prompt_tokens = len(encoding.encode(data['prompt'])) # type: ignore
|
||||||
|
completion_tokens = len(encoding.encode(completion_string))
|
||||||
|
model_response["usage"] = litellm.Usage(prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens)
|
||||||
|
return model_response
|
||||||
|
except Exception as e:
|
||||||
|
traceback.print_exc()
|
||||||
|
|
||||||
if async_generator_imported:
|
if async_generator_imported:
|
||||||
# ollama implementation
|
# ollama implementation
|
||||||
@async_generator
|
@async_generator
|
||||||
|
|
|
@ -8,6 +8,7 @@
|
||||||
# Thank you ! We ❤️ you! - Krrish & Ishaan
|
# Thank you ! We ❤️ you! - Krrish & Ishaan
|
||||||
|
|
||||||
import os, openai, sys, json, inspect, uuid, datetime, threading
|
import os, openai, sys, json, inspect, uuid, datetime, threading
|
||||||
|
from re import T
|
||||||
from typing import Any
|
from typing import Any
|
||||||
from functools import partial
|
from functools import partial
|
||||||
import dotenv, traceback, random, asyncio, time, contextvars
|
import dotenv, traceback, random, asyncio, time, contextvars
|
||||||
|
@ -175,7 +176,8 @@ async def acompletion(*args, **kwargs):
|
||||||
or custom_llm_provider == "deepinfra"
|
or custom_llm_provider == "deepinfra"
|
||||||
or custom_llm_provider == "perplexity"
|
or custom_llm_provider == "perplexity"
|
||||||
or custom_llm_provider == "text-completion-openai"
|
or custom_llm_provider == "text-completion-openai"
|
||||||
or custom_llm_provider == "huggingface"): # currently implemented aiohttp calls for just azure and openai, soon all.
|
or custom_llm_provider == "huggingface"
|
||||||
|
or custom_llm_provider == "ollama"): # currently implemented aiohttp calls for just azure and openai, soon all.
|
||||||
if kwargs.get("stream", False):
|
if kwargs.get("stream", False):
|
||||||
response = completion(*args, **kwargs)
|
response = completion(*args, **kwargs)
|
||||||
else:
|
else:
|
||||||
|
@ -1318,7 +1320,9 @@ def completion(
|
||||||
async_generator = ollama.async_get_ollama_response_stream(api_base, model, prompt, optional_params, logging_obj=logging)
|
async_generator = ollama.async_get_ollama_response_stream(api_base, model, prompt, optional_params, logging_obj=logging)
|
||||||
return async_generator
|
return async_generator
|
||||||
|
|
||||||
generator = ollama.get_ollama_response_stream(api_base, model, prompt, optional_params, logging_obj=logging)
|
generator = ollama.get_ollama_response_stream(api_base, model, prompt, optional_params, logging_obj=logging, acompletion=acompletion, model_response=model_response, encoding=encoding)
|
||||||
|
if acompletion is True:
|
||||||
|
return generator
|
||||||
if optional_params.get("stream", False) == True:
|
if optional_params.get("stream", False) == True:
|
||||||
# assume all ollama responses are streamed
|
# assume all ollama responses are streamed
|
||||||
response = CustomStreamWrapper(
|
response = CustomStreamWrapper(
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue