forked from phoenix/litellm-mirror
trying to add docs
This commit is contained in:
parent
0fe8799f94
commit
2cf949990e
834 changed files with 0 additions and 161273 deletions
|
@ -1,201 +0,0 @@
|
|||
## Get started
|
||||
We'll use a Pinecone vector store in this example.
|
||||
|
||||
First we'll want to create a `Pinecone` VectorStore and seed it with some data. We've created a small demo set of documents that contain summaries of movies.
|
||||
|
||||
To use Pinecone, you to have `pinecone` package installed and you must have an API key and an Environment. Here are the [installation instructions](https://docs.pinecone.io/docs/quickstart).
|
||||
|
||||
NOTE: The self-query retriever requires you to have `lark` package installed.
|
||||
|
||||
|
||||
```python
|
||||
# !pip install lark pinecone-client
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
import pinecone
|
||||
|
||||
|
||||
pinecone.init(api_key=os.environ["PINECONE_API_KEY"], environment=os.environ["PINECONE_ENV"])
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
from langchain.schema import Document
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
from langchain.vectorstores import Pinecone
|
||||
|
||||
embeddings = OpenAIEmbeddings()
|
||||
# create new index
|
||||
pinecone.create_index("langchain-self-retriever-demo", dimension=1536)
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
docs = [
|
||||
Document(page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose", metadata={"year": 1993, "rating": 7.7, "genre": ["action", "science fiction"]}),
|
||||
Document(page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...", metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2}),
|
||||
Document(page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea", metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6}),
|
||||
Document(page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them", metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3}),
|
||||
Document(page_content="Toys come alive and have a blast doing so", metadata={"year": 1995, "genre": "animated"}),
|
||||
Document(page_content="Three men walk into the Zone, three men walk out of the Zone", metadata={"year": 1979, "rating": 9.9, "director": "Andrei Tarkovsky", "genre": ["science fiction", "thriller"], "rating": 9.9})
|
||||
]
|
||||
vectorstore = Pinecone.from_documents(
|
||||
docs, embeddings, index_name="langchain-self-retriever-demo"
|
||||
)
|
||||
```
|
||||
|
||||
## Creating our self-querying retriever
|
||||
Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents.
|
||||
|
||||
|
||||
```python
|
||||
from langchain.llms import OpenAI
|
||||
from langchain.retrievers.self_query.base import SelfQueryRetriever
|
||||
from langchain.chains.query_constructor.base import AttributeInfo
|
||||
|
||||
metadata_field_info=[
|
||||
AttributeInfo(
|
||||
name="genre",
|
||||
description="The genre of the movie",
|
||||
type="string or list[string]",
|
||||
),
|
||||
AttributeInfo(
|
||||
name="year",
|
||||
description="The year the movie was released",
|
||||
type="integer",
|
||||
),
|
||||
AttributeInfo(
|
||||
name="director",
|
||||
description="The name of the movie director",
|
||||
type="string",
|
||||
),
|
||||
AttributeInfo(
|
||||
name="rating",
|
||||
description="A 1-10 rating for the movie",
|
||||
type="float"
|
||||
),
|
||||
]
|
||||
document_content_description = "Brief summary of a movie"
|
||||
llm = OpenAI(temperature=0)
|
||||
retriever = SelfQueryRetriever.from_llm(llm, vectorstore, document_content_description, metadata_field_info, verbose=True)
|
||||
```
|
||||
|
||||
## Testing it out
|
||||
And now we can try actually using our retriever!
|
||||
|
||||
|
||||
```python
|
||||
# This example only specifies a relevant query
|
||||
retriever.get_relevant_documents("What are some movies about dinosaurs")
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
query='dinosaur' filter=None
|
||||
|
||||
|
||||
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'genre': ['action', 'science fiction'], 'rating': 7.7, 'year': 1993.0}),
|
||||
Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'year': 1995.0}),
|
||||
Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'director': 'Satoshi Kon', 'rating': 8.6, 'year': 2006.0}),
|
||||
Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'director': 'Christopher Nolan', 'rating': 8.2, 'year': 2010.0})]
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
||||
|
||||
|
||||
```python
|
||||
# This example only specifies a filter
|
||||
retriever.get_relevant_documents("I want to watch a movie rated higher than 8.5")
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)
|
||||
|
||||
|
||||
[Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'director': 'Satoshi Kon', 'rating': 8.6, 'year': 2006.0}),
|
||||
Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'director': 'Andrei Tarkovsky', 'genre': ['science fiction', 'thriller'], 'rating': 9.9, 'year': 1979.0})]
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
||||
|
||||
|
||||
```python
|
||||
# This example specifies a query and a filter
|
||||
retriever.get_relevant_documents("Has Greta Gerwig directed any movies about women")
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig')
|
||||
|
||||
|
||||
[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'director': 'Greta Gerwig', 'rating': 8.3, 'year': 2019.0})]
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
||||
|
||||
|
||||
```python
|
||||
# This example specifies a composite filter
|
||||
retriever.get_relevant_documents("What's a highly rated (above 8.5) science fiction film?")
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction'), Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)])
|
||||
|
||||
|
||||
[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'director': 'Andrei Tarkovsky', 'genre': ['science fiction', 'thriller'], 'rating': 9.9, 'year': 1979.0})]
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
||||
|
||||
|
||||
```python
|
||||
# This example specifies a query and composite filter
|
||||
retriever.get_relevant_documents("What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated")
|
||||
```
|
||||
|
||||
<CodeOutputBlock lang="python">
|
||||
|
||||
```
|
||||
query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990.0), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005.0), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')])
|
||||
|
||||
|
||||
[Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'year': 1995.0})]
|
||||
```
|
||||
|
||||
</CodeOutputBlock>
|
||||
|
||||
## Filter k
|
||||
|
||||
We can also use the self query retriever to specify `k`: the number of documents to fetch.
|
||||
|
||||
We can do this by passing `enable_limit=True` to the constructor.
|
||||
|
||||
|
||||
```python
|
||||
retriever = SelfQueryRetriever.from_llm(
|
||||
llm,
|
||||
vectorstore,
|
||||
document_content_description,
|
||||
metadata_field_info,
|
||||
enable_limit=True,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
```python
|
||||
# This example only specifies a relevant query
|
||||
retriever.get_relevant_documents("What are two movies about dinosaurs")
|
||||
```
|
Loading…
Add table
Add a link
Reference in a new issue