trying to add docs

This commit is contained in:
ishaan-jaff 2023-07-29 07:06:56 -07:00
parent 0fe8799f94
commit 2cf949990e
834 changed files with 0 additions and 161273 deletions

View file

@ -1,97 +0,0 @@
```python
import langchain
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI()
```
## In Memory Cache
```python
from langchain.cache import InMemoryCache
langchain.llm_cache = InMemoryCache()
# The first time, it is not yet in cache, so it should take longer
llm.predict("Tell me a joke")
```
<CodeOutputBlock lang="python">
```
CPU times: user 35.9 ms, sys: 28.6 ms, total: 64.6 ms
Wall time: 4.83 s
"\n\nWhy couldn't the bicycle stand up by itself? It was...two tired!"
```
</CodeOutputBlock>
```python
# The second time it is, so it goes faster
llm.predict("Tell me a joke")
```
<CodeOutputBlock lang="python">
```
CPU times: user 238 µs, sys: 143 µs, total: 381 µs
Wall time: 1.76 ms
'\n\nWhy did the chicken cross the road?\n\nTo get to the other side.'
```
</CodeOutputBlock>
## SQLite Cache
```bash
rm .langchain.db
```
```python
# We can do the same thing with a SQLite cache
from langchain.cache import SQLiteCache
langchain.llm_cache = SQLiteCache(database_path=".langchain.db")
```
```python
# The first time, it is not yet in cache, so it should take longer
llm.predict("Tell me a joke")
```
<CodeOutputBlock lang="python">
```
CPU times: user 17 ms, sys: 9.76 ms, total: 26.7 ms
Wall time: 825 ms
'\n\nWhy did the chicken cross the road?\n\nTo get to the other side.'
```
</CodeOutputBlock>
```python
# The second time it is, so it goes faster
llm.predict("Tell me a joke")
```
<CodeOutputBlock lang="python">
```
CPU times: user 2.46 ms, sys: 1.23 ms, total: 3.7 ms
Wall time: 2.67 ms
'\n\nWhy did the chicken cross the road?\n\nTo get to the other side.'
```
</CodeOutputBlock>

View file

@ -1,16 +0,0 @@
```python
chain = LLMChain(llm=chat, prompt=chat_prompt)
```
```python
chain.run(input_language="English", output_language="French", text="I love programming.")
```
<CodeOutputBlock lang="python">
```
"J'adore la programmation."
```
</CodeOutputBlock>

View file

@ -1,47 +0,0 @@
You can make use of templating by using a `MessagePromptTemplate`. You can build a `ChatPromptTemplate` from one or more `MessagePromptTemplates`. You can use `ChatPromptTemplate`'s `format_prompt` -- this returns a `PromptValue`, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.
For convenience, there is a `from_template` method exposed on the template. If you were to use this template, this is what it would look like:
```python
from langchain import PromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
```
```python
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
# get a chat completion from the formatted messages
chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages())
```
<CodeOutputBlock lang="python">
```
AIMessage(content="J'adore la programmation.", additional_kwargs={})
```
</CodeOutputBlock>
If you wanted to construct the MessagePromptTemplate more directly, you could create a PromptTemplate outside and then pass it in, eg:
```python
prompt=PromptTemplate(
template="You are a helpful assistant that translates {input_language} to {output_language}.",
input_variables=["input_language", "output_language"],
)
system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)
```

View file

@ -1,59 +0,0 @@
```python
from langchain.chat_models import ChatOpenAI
from langchain.schema import (
HumanMessage,
)
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = chat([HumanMessage(content="Write me a song about sparkling water.")])
```
<CodeOutputBlock lang="python">
```
Verse 1:
Bubbles rising to the top
A refreshing drink that never stops
Clear and crisp, it's pure delight
A taste that's sure to excite
Chorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibe
Verse 2:
No sugar, no calories, just pure bliss
A drink that's hard to resist
It's the perfect way to quench my thirst
A drink that always comes first
Chorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibe
Bridge:
From the mountains to the sea
Sparkling water, you're the key
To a healthy life, a happy soul
A drink that makes me feel whole
Chorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibe
Outro:
Sparkling water, you're the one
A drink that's always so much fun
I'll never let you go, my friend
Sparkling
```
</CodeOutputBlock>