include methods in init import, add test, fix encode/decode param ordering

This commit is contained in:
Christian Privitelli 2024-05-02 15:49:22 +10:00
parent 3449a5e446
commit 2d43153efa
5 changed files with 19 additions and 5 deletions

View file

@ -608,6 +608,8 @@ from .utils import (
get_optional_params,
modify_integration,
token_counter,
create_pretrained_tokenizer,
create_tokenizer,
cost_per_token,
completion_cost,
supports_function_calling,

View file

@ -33,6 +33,8 @@ from litellm.utils import (
async_mock_completion_streaming_obj,
convert_to_model_response_object,
token_counter,
create_pretrained_tokenizer,
create_tokenizer,
Usage,
get_optional_params_embeddings,
get_optional_params_image_gen,

View file

@ -9,7 +9,7 @@ sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import time
from litellm import token_counter, encode, decode
from litellm import token_counter, create_pretrained_tokenizer, encode, decode
def test_token_counter_normal_plus_function_calling():
@ -69,15 +69,23 @@ def test_tokenizers():
model="meta-llama/Llama-2-7b-chat", text=sample_text
)
# llama3 tokenizer (also testing custom tokenizer)
llama3_tokens_1 = token_counter(model="meta-llama/llama-3-70b-instruct", text=sample_text)
llama3_tokenizer = create_pretrained_tokenizer("Xenova/llama-3-tokenizer")
llama3_tokens_2 = token_counter(custom_tokenizer=llama3_tokenizer, text=sample_text)
print(
f"openai tokens: {openai_tokens}; claude tokens: {claude_tokens}; cohere tokens: {cohere_tokens}; llama2 tokens: {llama2_tokens}"
f"openai tokens: {openai_tokens}; claude tokens: {claude_tokens}; cohere tokens: {cohere_tokens}; llama2 tokens: {llama2_tokens}; llama3 tokens: {llama3_tokens_1}"
)
# assert that all token values are different
assert (
openai_tokens != cohere_tokens != llama2_tokens
openai_tokens != cohere_tokens != llama2_tokens != llama3_tokens_1
), "Token values are not different."
assert llama3_tokens_1 == llama3_tokens_2, "Custom tokenizer is not being used! It has been configured to use the same tokenizer as the built in llama3 tokenizer and the results should be the same."
print("test tokenizer: It worked!")
except Exception as e:
pytest.fail(f"An exception occured: {e}")

View file

@ -20,6 +20,8 @@ from litellm.utils import (
validate_environment,
function_to_dict,
token_counter,
create_pretrained_tokenizer,
create_tokenizer,
)
# Assuming your trim_messages, shorten_message_to_fit_limit, and get_token_count functions are all in a module named 'message_utils'

View file

@ -3696,7 +3696,7 @@ def _select_tokenizer(model: str):
return {"type": "openai_tokenizer", "tokenizer": encoding}
def encode(model: str, custom_tokenizer: Optional[dict] = None, text: str):
def encode(model="", text="", custom_tokenizer: Optional[dict] = None):
"""
Encodes the given text using the specified model.
@ -3713,7 +3713,7 @@ def encode(model: str, custom_tokenizer: Optional[dict] = None, text: str):
return enc
def decode(model: str, custom_tokenizer: Optional[dict] = None, tokens: List[int]):
def decode(model="", tokens: List[int] = [], custom_tokenizer: Optional[dict] = None):
tokenizer_json = custom_tokenizer or _select_tokenizer(model=model)
dec = tokenizer_json["tokenizer"].decode(tokens)
return dec