(docs) load test litellm

This commit is contained in:
ishaan-jaff 2024-03-08 15:18:06 -08:00
parent 321769a74d
commit 2d71f54afb
3 changed files with 81 additions and 15 deletions

View file

@ -1,5 +1,84 @@
import Image from '@theme/IdealImage';
# 🔥 Load Test LiteLLM
## Load Test LiteLLM Proxy - 1500+ req/s
## 1500+ concurrent requests/s
LiteLLM proxy has been load tested to handle 1500+ concurrent req/s
```python
import time, asyncio
from openai import AsyncOpenAI, AsyncAzureOpenAI
import uuid
import traceback
# base_url - litellm proxy endpoint
# api_key - litellm proxy api-key, is created proxy with auth
litellm_client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234")
async def litellm_completion():
# Your existing code for litellm_completion goes here
try:
response = await litellm_client.chat.completions.create(
model="azure-gpt-3.5",
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
)
print(response)
return response
except Exception as e:
# If there's an exception, log the error message
with open("error_log.txt", "a") as error_log:
error_log.write(f"Error during completion: {str(e)}\n")
pass
async def main():
for i in range(1):
start = time.time()
n = 1500 # Number of concurrent tasks
tasks = [litellm_completion() for _ in range(n)]
chat_completions = await asyncio.gather(*tasks)
successful_completions = [c for c in chat_completions if c is not None]
# Write errors to error_log.txt
with open("error_log.txt", "a") as error_log:
for completion in chat_completions:
if isinstance(completion, str):
error_log.write(completion + "\n")
print(n, time.time() - start, len(successful_completions))
time.sleep(10)
if __name__ == "__main__":
# Blank out contents of error_log.txt
open("error_log.txt", "w").close()
asyncio.run(main())
```
### Throughput - 30% Increase
LiteLLM proxy + Load Balancer gives **30% increase** in throughput compared to Raw OpenAI API
<Image img={require('../img/throughput.png')} />
### Latency Added - 0.00325 seconds
LiteLLM proxy adds **0.00325 seconds** latency as compared to using the Raw OpenAI API
<Image img={require('../img/latency.png')} />
### Testing LiteLLM Proxy with Locust
- 1 LiteLLM container can handle ~140 requests/second with 0.4 failures
<Image img={require('../img/locust.png')} />
## Load Test LiteLLM SDK vs OpenAI
Here is a script to load test LiteLLM vs OpenAI
```python
@ -84,4 +163,5 @@ async def loadtest_fn():
# Run the event loop to execute the async function
asyncio.run(loadtest_fn())
```
```

View file

@ -350,17 +350,3 @@ Run the command `docker-compose up` or `docker compose up` as per your docker in
Your LiteLLM container should be running now on the defined port e.g. `8000`.
## LiteLLM Proxy Performance
LiteLLM proxy has been load tested to handle 1500 req/s.
### Throughput - 30% Increase
LiteLLM proxy + Load Balancer gives **30% increase** in throughput compared to Raw OpenAI API
<Image img={require('../../img/throughput.png')} />
### Latency Added - 0.00325 seconds
LiteLLM proxy adds **0.00325 seconds** latency as compared to using the Raw OpenAI API
<Image img={require('../../img/latency.png')} />

Binary file not shown.

After

Width:  |  Height:  |  Size: 109 KiB