Merge branch 'main' into litellm_perf_fix

This commit is contained in:
Ishaan Jaff 2024-09-27 07:59:57 -07:00
commit 2e81b98846
10 changed files with 116 additions and 75 deletions

View file

@ -41,7 +41,7 @@ RUN pip install redisvl==0.0.7 --no-deps
# ensure pyjwt is used, not jwt
RUN pip uninstall jwt -y
RUN pip uninstall PyJWT -y
RUN pip install PyJWT --no-cache-dir
RUN pip install PyJWT==2.9.0 --no-cache-dir
# Build Admin UI
RUN chmod +x build_admin_ui.sh && ./build_admin_ui.sh

View file

@ -36,8 +36,8 @@ RUN pip wheel --no-cache-dir --wheel-dir=/wheels/ -r requirements.txt
# Runtime stage
FROM $LITELLM_RUNTIME_IMAGE AS runtime
# Update dependencies and clean up - handles debian security issue
RUN apt-get update && apt-get upgrade -y && rm -rf /var/lib/apt/lists/*
# Update dependencies and clean up
RUN apk update && apk upgrade && rm -rf /var/cache/apk/*
WORKDIR /app

View file

@ -59,7 +59,7 @@ RUN pip install redisvl==0.0.7 --no-deps
# ensure pyjwt is used, not jwt
RUN pip uninstall jwt -y
RUN pip uninstall PyJWT -y
RUN pip install PyJWT --no-cache-dir
RUN pip install PyJWT==2.9.0 --no-cache-dir
# Build Admin UI
RUN chmod +x build_admin_ui.sh && ./build_admin_ui.sh

View file

@ -59,7 +59,7 @@ RUN pip install redisvl==0.0.7 --no-deps
# ensure pyjwt is used, not jwt
RUN pip uninstall jwt -y
RUN pip uninstall PyJWT -y
RUN pip install PyJWT --no-cache-dir
RUN pip install PyJWT==2.9.0 --no-cache-dir
# Build Admin UI
RUN chmod +x build_admin_ui.sh && ./build_admin_ui.sh

View file

@ -2,24 +2,56 @@ import Image from '@theme/IdealImage';
# 🪢 Langfuse - Logging LLM Input/Output
LangFuse is open Source Observability & Analytics for LLM Apps
Detailed production traces and a granular view on quality, cost and latency
## What is Langfuse?
<Image img={require('../../img/langfuse.png')} />
Langfuse ([GitHub](https://github.com/langfuse/langfuse)) is an open-source LLM engineering platform for model [tracing](https://langfuse.com/docs/tracing), [prompt management](https://langfuse.com/docs/prompts/get-started), and application [evaluation](https://langfuse.com/docs/scores/overview). Langfuse helps teams to collaboratively debug, analyze, and iterate on their LLM applications.
## Monitoring LiteLLM with Langfuse
You can integrate LiteLLM with Langfuse in three different ways:
1. Using the LiteLLM Proxy with the OpenAI SDK Wrapper. This proxy standardizes over 100 models to the OpenAI API schema, and the Langfuse OpenAI SDK wrapper instruments the LLM calls.
2. Enabling logging in the LiteLLM Proxy through the UI to send logs to Langfuse.
3. Configuring the LiteLLM Python SDK to send logs to Langfuse by setting the appropriate environment variables.
Example trace in Langfuse using multiple models via LiteLLM:
<Image img={require('../../img/langfuse-example-trace-multiple-models-min')} />
## 1. LiteLLM Proxy + Langfuse OpenAI SDK Wrapper
:::info
We want to learn how we can make the callbacks better! Meet the LiteLLM [founders](https://calendly.com/d/4mp-gd3-k5k/berriai-1-1-onboarding-litellm-hosted-version) or
join our [discord](https://discord.gg/wuPM9dRgDw)
:::
This is the recommended method to integrate LiteLLM with Langfuse. The Langfuse OpenAI SDK wrapper automatically records token counts, latencies, streaming response times (time to first token), API errors, and more.
:::
## Pre-Requisites
**How this works:**
The [LiteLLM Proxy](https://docs.litellm.ai/docs/simple_proxy) standardizes 100+ models on the OpenAI API schema
and the Langfuse OpenAI SDK wrapper ([Python](https://langfuse.com/docs/integrations/openai/python), [JS/TS](https://langfuse.com/docs/integrations/openai/js)) instruments the LLM calls.
To see a full end-to-end example, check out the LiteLLM cookbook:
- [Python Cookbook](https://langfuse.com/docs/integrations/litellm/example-proxy-python)
- [JS/TS Cookbook](https://langfuse.com/docs/integrations/litellm/example-proxy-js)
## 2. Send Logs from LiteLLM Proxy to Langfuse
By setting the callback to Langfuse in the LiteLLM UI you can instantly log your responses across all providers. For more information on how to setup the Proxy UI, see the [LiteLLM docs](../proxy/ui).
<Image img={require('../../img/langfuse-litellm-ui.png')} />
## 3. LiteLLM Python SDK
### Pre-Requisites
Ensure you have run `pip install langfuse` for this integration
```shell
pip install langfuse>=2.0.0 litellm
```
## Quick Start
Use just 2 lines of code, to instantly log your responses **across all providers** with Langfuse
### Quick Start
Use just 2 lines of code, to instantly log your responses **across all providers** with Langfuse:
<a target="_blank" href="https://colab.research.google.com/github/BerriAI/litellm/blob/main/cookbook/logging_observability/LiteLLM_Langfuse.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
@ -55,8 +87,8 @@ response = litellm.completion(
)
```
## Advanced
### Set Custom Generation names, pass metadata
### Advanced
#### Set Custom Generation Names, pass Metadata
Pass `generation_name` in `metadata`
@ -66,13 +98,13 @@ from litellm import completion
import os
# from https://cloud.langfuse.com/
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-..."
os.environ["LANGFUSE_SECRET_KEY"] = "sk-..."
# OpenAI and Cohere keys
# You can use any of the litellm supported providers: https://docs.litellm.ai/docs/providers
os.environ['OPENAI_API_KEY']=""
os.environ['OPENAI_API_KEY']="sk-..."
# set langfuse as a callback, litellm will send the data to langfuse
litellm.success_callback = ["langfuse"]
@ -94,7 +126,7 @@ print(response)
```
### Set Custom Trace ID, Trace User ID, Trace Metadata, Trace Version, Trace Release and Tags
#### Set Custom Trace ID, Trace User ID, Trace Metadata, Trace Version, Trace Release and Tags
Pass `trace_id`, `trace_user_id`, `trace_metadata`, `trace_version`, `trace_release`, `tags` in `metadata`
@ -105,10 +137,10 @@ from litellm import completion
import os
# from https://cloud.langfuse.com/
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-..."
os.environ["LANGFUSE_SECRET_KEY"] = "sk-..."
os.environ['OPENAI_API_KEY']=""
os.environ['OPENAI_API_KEY']="sk-..."
# set langfuse as a callback, litellm will send the data to langfuse
litellm.success_callback = ["langfuse"]
@ -167,9 +199,9 @@ curl --location --request POST 'http://0.0.0.0:4000/chat/completions' \
```
### Trace & Generation Parameters
#### Trace & Generation Parameters
#### Trace Specific Parameters
##### Trace Specific Parameters
* `trace_id` - Identifier for the trace, must use `existing_trace_id` instead of `trace_id` if this is an existing trace, auto-generated by default
* `trace_name` - Name of the trace, auto-generated by default
@ -216,10 +248,10 @@ from langchain.schema import HumanMessage
import litellm
# from https://cloud.langfuse.com/
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-..."
os.environ["LANGFUSE_SECRET_KEY"] = "sk-..."
os.environ['OPENAI_API_KEY']=""
os.environ['OPENAI_API_KEY']="sk-..."
# set langfuse as a callback, litellm will send the data to langfuse
litellm.success_callback = ["langfuse"]
@ -242,13 +274,13 @@ messages = [
chat(messages)
```
## Redacting Messages, Response Content from Langfuse Logging
### Redacting Messages, Response Content from Langfuse Logging
### Redact Messages and Responses from all Langfuse Logging
#### Redact Messages and Responses from all Langfuse Logging
Set `litellm.turn_off_message_logging=True` This will prevent the messages and responses from being logged to langfuse, but request metadata will still be logged.
### Redact Messages and Responses from specific Langfuse Logging
#### Redact Messages and Responses from specific Langfuse Logging
In the metadata typically passed for text completion or embedding calls you can set specific keys to mask the messages and responses for this call.
@ -258,13 +290,14 @@ Setting `mask_output` to `True` will make the output from being logged for this
Be aware that if you are continuing an existing trace, and you set `update_trace_keys` to include either `input` or `output` and you set the corresponding `mask_input` or `mask_output`, then that trace will have its existing input and/or output replaced with a redacted message.
## **Use with LiteLLM Proxy (LLM Gateway) **
### Use with LiteLLM Proxy (LLM Gateway)
👉 [**Follow this link to start sending logs to langfuse with LiteLLM Proxy server**](../proxy/logging)
## Troubleshooting & Errors
### Data not getting logged to Langfuse ?
- Ensure you're on the latest version of langfuse `pip install langfuse -U`. The latest version allows litellm to log JSON input/outputs to langfuse
- Follow [this checklist](https://langfuse.com/faq/all/missing-traces) if you don't see any traces in langfuse.
## Support & Talk to Founders

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 157 KiB

View file

@ -0,0 +1,45 @@
"""
Common helpers / utils across al OpenAI endpoints
"""
import json
from typing import Any, Dict, List
import openai
####### Error Handling Utils for OpenAI API #######################
###################################################################
def drop_params_from_unprocessable_entity_error(
e: openai.UnprocessableEntityError, data: Dict[str, Any]
) -> Dict[str, Any]:
"""
Helper function to read OpenAI UnprocessableEntityError and drop the params that raised an error from the error message.
Args:
e (UnprocessableEntityError): The UnprocessableEntityError exception
data (Dict[str, Any]): The original data dictionary containing all parameters
Returns:
Dict[str, Any]: A new dictionary with invalid parameters removed
"""
invalid_params: List[str] = []
if e.body is not None and isinstance(e.body, dict) and e.body.get("message"):
message = e.body.get("message", {})
if isinstance(message, str):
try:
message = json.loads(message)
except json.JSONDecodeError:
message = {"detail": message}
detail = message.get("detail")
if isinstance(detail, List) and len(detail) > 0 and isinstance(detail[0], dict):
for error_dict in detail:
if (
error_dict.get("loc")
and isinstance(error_dict.get("loc"), list)
and len(error_dict.get("loc")) == 2
):
invalid_params.append(error_dict["loc"][1])
new_data = {k: v for k, v in data.items() if k not in invalid_params}
return new_data

View file

@ -31,6 +31,7 @@ from litellm.utils import (
from ...types.llms.openai import *
from ..base import BaseLLM
from ..prompt_templates.factory import custom_prompt, prompt_factory
from .common_utils import drop_params_from_unprocessable_entity_error
class OpenAIError(Exception):
@ -831,27 +832,9 @@ class OpenAIChatCompletion(BaseLLM):
except openai.UnprocessableEntityError as e:
## check if body contains unprocessable params - related issue https://github.com/BerriAI/litellm/issues/4800
if litellm.drop_params is True or drop_params is True:
invalid_params: List[str] = []
if e.body is not None and isinstance(e.body, dict) and e.body.get("detail"): # type: ignore
detail = e.body.get("detail") # type: ignore
if (
isinstance(detail, List)
and len(detail) > 0
and isinstance(detail[0], dict)
):
for error_dict in detail:
if (
error_dict.get("loc")
and isinstance(error_dict.get("loc"), list)
and len(error_dict.get("loc")) == 2
):
invalid_params.append(error_dict["loc"][1])
new_data = {}
for k, v in optional_params.items():
if k not in invalid_params:
new_data[k] = v
optional_params = new_data
optional_params = drop_params_from_unprocessable_entity_error(
e, optional_params
)
else:
raise e
# e.message
@ -967,27 +950,7 @@ class OpenAIChatCompletion(BaseLLM):
except openai.UnprocessableEntityError as e:
## check if body contains unprocessable params - related issue https://github.com/BerriAI/litellm/issues/4800
if litellm.drop_params is True or drop_params is True:
invalid_params: List[str] = []
if e.body is not None and isinstance(e.body, dict) and e.body.get("detail"): # type: ignore
detail = e.body.get("detail") # type: ignore
if (
isinstance(detail, List)
and len(detail) > 0
and isinstance(detail[0], dict)
):
for error_dict in detail:
if (
error_dict.get("loc")
and isinstance(error_dict.get("loc"), list)
and len(error_dict.get("loc")) == 2
):
invalid_params.append(error_dict["loc"][1])
new_data = {}
for k, v in data.items():
if k not in invalid_params:
new_data[k] = v
data = new_data
data = drop_params_from_unprocessable_entity_error(e, data)
else:
raise e
# e.message

View file

@ -21,7 +21,7 @@ prometheus_client==0.20.0 # for /metrics endpoint on proxy
orjson==3.9.15 # fast /embedding responses
apscheduler==3.10.4 # for resetting budget in background
fastapi-sso==0.10.0 # admin UI, SSO
pyjwt[crypto]==2.8.0
pyjwt[crypto]==2.9.0
python-multipart==0.0.9 # admin UI
Pillow==10.3.0
azure-ai-contentsafety==1.0.0 # for azure content safety