forked from phoenix/litellm-mirror
feat(cohere/chat.py): return citations in model response
Closes https://github.com/BerriAI/litellm/issues/6814
This commit is contained in:
parent
bd59f18809
commit
2fbc71a62c
6 changed files with 310 additions and 254 deletions
|
@ -437,29 +437,6 @@ class CustomStreamWrapper:
|
||||||
except Exception:
|
except Exception:
|
||||||
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
||||||
|
|
||||||
def handle_cohere_chat_chunk(self, chunk):
|
|
||||||
chunk = chunk.decode("utf-8")
|
|
||||||
data_json = json.loads(chunk)
|
|
||||||
print_verbose(f"chunk: {chunk}")
|
|
||||||
try:
|
|
||||||
text = ""
|
|
||||||
is_finished = False
|
|
||||||
finish_reason = ""
|
|
||||||
if "text" in data_json:
|
|
||||||
text = data_json["text"]
|
|
||||||
elif "is_finished" in data_json and data_json["is_finished"] is True:
|
|
||||||
is_finished = data_json["is_finished"]
|
|
||||||
finish_reason = data_json["finish_reason"]
|
|
||||||
else:
|
|
||||||
return
|
|
||||||
return {
|
|
||||||
"text": text,
|
|
||||||
"is_finished": is_finished,
|
|
||||||
"finish_reason": finish_reason,
|
|
||||||
}
|
|
||||||
except Exception:
|
|
||||||
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
|
||||||
|
|
||||||
def handle_azure_chunk(self, chunk):
|
def handle_azure_chunk(self, chunk):
|
||||||
is_finished = False
|
is_finished = False
|
||||||
finish_reason = ""
|
finish_reason = ""
|
||||||
|
@ -949,7 +926,12 @@ class CustomStreamWrapper:
|
||||||
"function_call" in completion_obj
|
"function_call" in completion_obj
|
||||||
and completion_obj["function_call"] is not None
|
and completion_obj["function_call"] is not None
|
||||||
)
|
)
|
||||||
|
or (
|
||||||
|
"provider_specific_fields" in response_obj
|
||||||
|
and response_obj["provider_specific_fields"] is not None
|
||||||
|
)
|
||||||
): # cannot set content of an OpenAI Object to be an empty string
|
): # cannot set content of an OpenAI Object to be an empty string
|
||||||
|
|
||||||
self.safety_checker()
|
self.safety_checker()
|
||||||
hold, model_response_str = self.check_special_tokens(
|
hold, model_response_str = self.check_special_tokens(
|
||||||
chunk=completion_obj["content"],
|
chunk=completion_obj["content"],
|
||||||
|
@ -1058,6 +1040,7 @@ class CustomStreamWrapper:
|
||||||
and model_response.choices[0].delta.audio is not None
|
and model_response.choices[0].delta.audio is not None
|
||||||
):
|
):
|
||||||
return model_response
|
return model_response
|
||||||
|
|
||||||
else:
|
else:
|
||||||
if hasattr(model_response, "usage"):
|
if hasattr(model_response, "usage"):
|
||||||
self.chunks.append(model_response)
|
self.chunks.append(model_response)
|
||||||
|
@ -1066,6 +1049,7 @@ class CustomStreamWrapper:
|
||||||
def chunk_creator(self, chunk): # type: ignore # noqa: PLR0915
|
def chunk_creator(self, chunk): # type: ignore # noqa: PLR0915
|
||||||
model_response = self.model_response_creator()
|
model_response = self.model_response_creator()
|
||||||
response_obj: dict = {}
|
response_obj: dict = {}
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# return this for all models
|
# return this for all models
|
||||||
completion_obj = {"content": ""}
|
completion_obj = {"content": ""}
|
||||||
|
@ -1256,14 +1240,6 @@ class CustomStreamWrapper:
|
||||||
completion_obj["content"] = response_obj["text"]
|
completion_obj["content"] = response_obj["text"]
|
||||||
if response_obj["is_finished"]:
|
if response_obj["is_finished"]:
|
||||||
self.received_finish_reason = response_obj["finish_reason"]
|
self.received_finish_reason = response_obj["finish_reason"]
|
||||||
elif self.custom_llm_provider == "cohere_chat":
|
|
||||||
response_obj = self.handle_cohere_chat_chunk(chunk)
|
|
||||||
if response_obj is None:
|
|
||||||
return
|
|
||||||
completion_obj["content"] = response_obj["text"]
|
|
||||||
if response_obj["is_finished"]:
|
|
||||||
self.received_finish_reason = response_obj["finish_reason"]
|
|
||||||
|
|
||||||
elif self.custom_llm_provider == "petals":
|
elif self.custom_llm_provider == "petals":
|
||||||
if len(self.completion_stream) == 0:
|
if len(self.completion_stream) == 0:
|
||||||
if self.received_finish_reason is not None:
|
if self.received_finish_reason is not None:
|
||||||
|
|
|
@ -4,13 +4,20 @@ import time
|
||||||
import traceback
|
import traceback
|
||||||
import types
|
import types
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from typing import Callable, Optional
|
from typing import Any, Callable, List, Optional, Tuple, Union
|
||||||
|
|
||||||
import httpx # type: ignore
|
import httpx # type: ignore
|
||||||
import requests # type: ignore
|
import requests # type: ignore
|
||||||
|
|
||||||
import litellm
|
import litellm
|
||||||
|
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
|
||||||
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||||
from litellm.types.llms.cohere import ToolResultObject
|
from litellm.types.llms.cohere import ToolResultObject
|
||||||
|
from litellm.types.utils import (
|
||||||
|
ChatCompletionToolCallChunk,
|
||||||
|
ChatCompletionUsageBlock,
|
||||||
|
GenericStreamingChunk,
|
||||||
|
)
|
||||||
from litellm.utils import Choices, Message, ModelResponse, Usage
|
from litellm.utils import Choices, Message, ModelResponse, Usage
|
||||||
|
|
||||||
from ..prompt_templates.factory import cohere_message_pt, cohere_messages_pt_v2
|
from ..prompt_templates.factory import cohere_message_pt, cohere_messages_pt_v2
|
||||||
|
@ -198,6 +205,106 @@ def construct_cohere_tool(tools=None):
|
||||||
return cohere_tools
|
return cohere_tools
|
||||||
|
|
||||||
|
|
||||||
|
async def make_call(
|
||||||
|
client: Optional[AsyncHTTPHandler],
|
||||||
|
api_base: str,
|
||||||
|
headers: dict,
|
||||||
|
data: str,
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
logging_obj,
|
||||||
|
timeout: Optional[Union[float, httpx.Timeout]],
|
||||||
|
json_mode: bool,
|
||||||
|
) -> Tuple[Any, httpx.Headers]:
|
||||||
|
if client is None:
|
||||||
|
client = litellm.module_level_aclient
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = await client.post(
|
||||||
|
api_base, headers=headers, data=data, stream=True, timeout=timeout
|
||||||
|
)
|
||||||
|
except httpx.HTTPStatusError as e:
|
||||||
|
error_headers = getattr(e, "headers", None)
|
||||||
|
error_response = getattr(e, "response", None)
|
||||||
|
if error_headers is None and error_response:
|
||||||
|
error_headers = getattr(error_response, "headers", None)
|
||||||
|
raise CohereError(
|
||||||
|
status_code=e.response.status_code,
|
||||||
|
message=await e.response.aread(),
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
for exception in litellm.LITELLM_EXCEPTION_TYPES:
|
||||||
|
if isinstance(e, exception):
|
||||||
|
raise e
|
||||||
|
raise CohereError(status_code=500, message=str(e))
|
||||||
|
|
||||||
|
completion_stream = ModelResponseIterator(
|
||||||
|
streaming_response=response.aiter_lines(),
|
||||||
|
sync_stream=False,
|
||||||
|
json_mode=json_mode,
|
||||||
|
)
|
||||||
|
|
||||||
|
# LOGGING
|
||||||
|
logging_obj.post_call(
|
||||||
|
input=messages,
|
||||||
|
api_key="",
|
||||||
|
original_response=completion_stream, # Pass the completion stream for logging
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
|
)
|
||||||
|
|
||||||
|
return completion_stream, response.headers
|
||||||
|
|
||||||
|
|
||||||
|
def make_sync_call(
|
||||||
|
client: Optional[HTTPHandler],
|
||||||
|
api_base: str,
|
||||||
|
headers: dict,
|
||||||
|
data: str,
|
||||||
|
model: str,
|
||||||
|
messages: list,
|
||||||
|
logging_obj,
|
||||||
|
timeout: Optional[Union[float, httpx.Timeout]],
|
||||||
|
) -> Tuple[Any, httpx.Headers]:
|
||||||
|
if client is None:
|
||||||
|
client = litellm.module_level_client # re-use a module level client
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = client.post(
|
||||||
|
api_base, headers=headers, data=data, stream=True, timeout=timeout
|
||||||
|
)
|
||||||
|
except httpx.HTTPStatusError as e:
|
||||||
|
raise CohereError(
|
||||||
|
status_code=e.response.status_code,
|
||||||
|
message=e.response.read(),
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
for exception in litellm.LITELLM_EXCEPTION_TYPES:
|
||||||
|
if isinstance(e, exception):
|
||||||
|
raise e
|
||||||
|
raise CohereError(status_code=500, message=str(e))
|
||||||
|
|
||||||
|
if response.status_code != 200:
|
||||||
|
|
||||||
|
raise CohereError(
|
||||||
|
status_code=response.status_code,
|
||||||
|
message=response.read(),
|
||||||
|
)
|
||||||
|
|
||||||
|
completion_stream = ModelResponseIterator(
|
||||||
|
streaming_response=response.iter_lines(), sync_stream=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# LOGGING
|
||||||
|
logging_obj.post_call(
|
||||||
|
input=messages,
|
||||||
|
api_key="",
|
||||||
|
original_response="first stream response received",
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
|
)
|
||||||
|
|
||||||
|
return completion_stream, response.headers
|
||||||
|
|
||||||
|
|
||||||
def completion(
|
def completion(
|
||||||
model: str,
|
model: str,
|
||||||
messages: list,
|
messages: list,
|
||||||
|
@ -211,6 +318,8 @@ def completion(
|
||||||
logging_obj,
|
logging_obj,
|
||||||
litellm_params=None,
|
litellm_params=None,
|
||||||
logger_fn=None,
|
logger_fn=None,
|
||||||
|
client=None,
|
||||||
|
timeout=None,
|
||||||
):
|
):
|
||||||
headers = validate_environment(api_key, headers=headers)
|
headers = validate_environment(api_key, headers=headers)
|
||||||
completion_url = api_base
|
completion_url = api_base
|
||||||
|
@ -269,7 +378,23 @@ def completion(
|
||||||
raise CohereError(message=response.text, status_code=response.status_code)
|
raise CohereError(message=response.text, status_code=response.status_code)
|
||||||
|
|
||||||
if "stream" in optional_params and optional_params["stream"] is True:
|
if "stream" in optional_params and optional_params["stream"] is True:
|
||||||
return response.iter_lines()
|
completion_stream, headers = make_sync_call(
|
||||||
|
client=client,
|
||||||
|
api_base=api_base,
|
||||||
|
headers=headers, # type: ignore
|
||||||
|
data=json.dumps(data),
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
timeout=timeout,
|
||||||
|
)
|
||||||
|
return CustomStreamWrapper(
|
||||||
|
completion_stream=completion_stream,
|
||||||
|
model=model,
|
||||||
|
custom_llm_provider="cohere_chat",
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
_response_headers=headers,
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
|
@ -286,6 +411,10 @@ def completion(
|
||||||
except Exception:
|
except Exception:
|
||||||
raise CohereError(message=response.text, status_code=response.status_code)
|
raise CohereError(message=response.text, status_code=response.status_code)
|
||||||
|
|
||||||
|
## ADD CITATIONS
|
||||||
|
if "citations" in completion_response:
|
||||||
|
setattr(model_response, "citations", completion_response["citations"])
|
||||||
|
|
||||||
## Tool calling response
|
## Tool calling response
|
||||||
cohere_tools_response = completion_response.get("tool_calls", None)
|
cohere_tools_response = completion_response.get("tool_calls", None)
|
||||||
if cohere_tools_response is not None and cohere_tools_response != []:
|
if cohere_tools_response is not None and cohere_tools_response != []:
|
||||||
|
@ -325,3 +454,103 @@ def completion(
|
||||||
)
|
)
|
||||||
setattr(model_response, "usage", usage)
|
setattr(model_response, "usage", usage)
|
||||||
return model_response
|
return model_response
|
||||||
|
|
||||||
|
|
||||||
|
class ModelResponseIterator:
|
||||||
|
def __init__(
|
||||||
|
self, streaming_response, sync_stream: bool, json_mode: Optional[bool] = False
|
||||||
|
):
|
||||||
|
self.streaming_response = streaming_response
|
||||||
|
self.response_iterator = self.streaming_response
|
||||||
|
self.content_blocks: List = []
|
||||||
|
self.tool_index = -1
|
||||||
|
self.json_mode = json_mode
|
||||||
|
|
||||||
|
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
|
||||||
|
try:
|
||||||
|
text = ""
|
||||||
|
tool_use: Optional[ChatCompletionToolCallChunk] = None
|
||||||
|
is_finished = False
|
||||||
|
finish_reason = ""
|
||||||
|
usage: Optional[ChatCompletionUsageBlock] = None
|
||||||
|
provider_specific_fields = None
|
||||||
|
|
||||||
|
index = int(chunk.get("index", 0))
|
||||||
|
|
||||||
|
if "text" in chunk:
|
||||||
|
text = chunk["text"]
|
||||||
|
elif "is_finished" in chunk and chunk["is_finished"] is True:
|
||||||
|
is_finished = chunk["is_finished"]
|
||||||
|
finish_reason = chunk["finish_reason"]
|
||||||
|
|
||||||
|
if "citations" in chunk:
|
||||||
|
provider_specific_fields = {"citations": chunk["citations"]}
|
||||||
|
|
||||||
|
returned_chunk = GenericStreamingChunk(
|
||||||
|
text=text,
|
||||||
|
tool_use=tool_use,
|
||||||
|
is_finished=is_finished,
|
||||||
|
finish_reason=finish_reason,
|
||||||
|
usage=usage,
|
||||||
|
index=index,
|
||||||
|
provider_specific_fields=provider_specific_fields,
|
||||||
|
)
|
||||||
|
|
||||||
|
return returned_chunk
|
||||||
|
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
raise ValueError(f"Failed to decode JSON from chunk: {chunk}")
|
||||||
|
|
||||||
|
# Sync iterator
|
||||||
|
def __iter__(self):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __next__(self):
|
||||||
|
try:
|
||||||
|
chunk = self.response_iterator.__next__()
|
||||||
|
except StopIteration:
|
||||||
|
raise StopIteration
|
||||||
|
except ValueError as e:
|
||||||
|
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
str_line = chunk
|
||||||
|
if isinstance(chunk, bytes): # Handle binary data
|
||||||
|
str_line = chunk.decode("utf-8") # Convert bytes to string
|
||||||
|
index = str_line.find("data:")
|
||||||
|
if index != -1:
|
||||||
|
str_line = str_line[index:]
|
||||||
|
data_json = json.loads(str_line)
|
||||||
|
return self.chunk_parser(chunk=data_json)
|
||||||
|
except StopIteration:
|
||||||
|
raise StopIteration
|
||||||
|
except ValueError as e:
|
||||||
|
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
|
||||||
|
|
||||||
|
# Async iterator
|
||||||
|
def __aiter__(self):
|
||||||
|
self.async_response_iterator = self.streaming_response.__aiter__()
|
||||||
|
return self
|
||||||
|
|
||||||
|
async def __anext__(self):
|
||||||
|
try:
|
||||||
|
chunk = await self.async_response_iterator.__anext__()
|
||||||
|
except StopAsyncIteration:
|
||||||
|
raise StopAsyncIteration
|
||||||
|
except ValueError as e:
|
||||||
|
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
||||||
|
|
||||||
|
try:
|
||||||
|
str_line = chunk
|
||||||
|
if isinstance(chunk, bytes): # Handle binary data
|
||||||
|
str_line = chunk.decode("utf-8") # Convert bytes to string
|
||||||
|
index = str_line.find("data:")
|
||||||
|
if index != -1:
|
||||||
|
str_line = str_line[index:]
|
||||||
|
|
||||||
|
data_json = json.loads(str_line)
|
||||||
|
return self.chunk_parser(chunk=data_json)
|
||||||
|
except StopAsyncIteration:
|
||||||
|
raise StopAsyncIteration
|
||||||
|
except ValueError as e:
|
||||||
|
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
|
||||||
|
|
|
@ -1970,15 +1970,16 @@ def completion( # type: ignore # noqa: PLR0915
|
||||||
logging_obj=logging, # model call logging done inside the class as we make need to modify I/O to fit aleph alpha's requirements
|
logging_obj=logging, # model call logging done inside the class as we make need to modify I/O to fit aleph alpha's requirements
|
||||||
)
|
)
|
||||||
|
|
||||||
if "stream" in optional_params and optional_params["stream"] is True:
|
# if "stream" in optional_params and optional_params["stream"] is True:
|
||||||
# don't try to access stream object,
|
# # don't try to access stream object,
|
||||||
response = CustomStreamWrapper(
|
# response = CustomStreamWrapper(
|
||||||
model_response,
|
# model_response,
|
||||||
model,
|
# model,
|
||||||
custom_llm_provider="cohere_chat",
|
# custom_llm_provider="cohere_chat",
|
||||||
logging_obj=logging,
|
# logging_obj=logging,
|
||||||
)
|
# _response_headers=headers,
|
||||||
return response
|
# )
|
||||||
|
# return response
|
||||||
response = model_response
|
response = model_response
|
||||||
elif custom_llm_provider == "maritalk":
|
elif custom_llm_provider == "maritalk":
|
||||||
maritalk_key = (
|
maritalk_key = (
|
||||||
|
|
59
tests/llm_translation/test_cohere.py
Normal file
59
tests/llm_translation/test_cohere.py
Normal file
|
@ -0,0 +1,59 @@
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
import io
|
||||||
|
import os
|
||||||
|
|
||||||
|
sys.path.insert(
|
||||||
|
0, os.path.abspath("../..")
|
||||||
|
) # Adds the parent directory to the system path
|
||||||
|
import json
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import litellm
|
||||||
|
from litellm import RateLimitError, Timeout, completion, completion_cost, embedding
|
||||||
|
|
||||||
|
litellm.num_retries = 3
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("stream", [True, False])
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_chat_completion_cohere_citations(stream):
|
||||||
|
try:
|
||||||
|
litellm.set_verbose = True
|
||||||
|
messages = [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "Which penguins are the tallest?",
|
||||||
|
},
|
||||||
|
]
|
||||||
|
response = await litellm.acompletion(
|
||||||
|
model="cohere_chat/command-r",
|
||||||
|
messages=messages,
|
||||||
|
documents=[
|
||||||
|
{"title": "Tall penguins", "text": "Emperor penguins are the tallest."},
|
||||||
|
{
|
||||||
|
"title": "Penguin habitats",
|
||||||
|
"text": "Emperor penguins only live in Antarctica.",
|
||||||
|
},
|
||||||
|
],
|
||||||
|
stream=stream,
|
||||||
|
)
|
||||||
|
|
||||||
|
if stream:
|
||||||
|
citations_chunk = False
|
||||||
|
async for chunk in response:
|
||||||
|
print("received chunk", chunk)
|
||||||
|
if "citations" in chunk:
|
||||||
|
citations_chunk = True
|
||||||
|
break
|
||||||
|
assert citations_chunk
|
||||||
|
else:
|
||||||
|
assert response.citations is not None
|
||||||
|
except Exception as e:
|
||||||
|
pytest.fail(f"Error occurred: {e}")
|
|
@ -1,210 +0,0 @@
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
import traceback
|
|
||||||
|
|
||||||
from dotenv import load_dotenv
|
|
||||||
|
|
||||||
load_dotenv()
|
|
||||||
import io
|
|
||||||
import os
|
|
||||||
|
|
||||||
sys.path.insert(
|
|
||||||
0, os.path.abspath("../..")
|
|
||||||
) # Adds the parent directory to the system path
|
|
||||||
import json
|
|
||||||
|
|
||||||
import pytest
|
|
||||||
|
|
||||||
import litellm
|
|
||||||
from litellm import RateLimitError, Timeout, completion, completion_cost, embedding
|
|
||||||
|
|
||||||
litellm.num_retries = 3
|
|
||||||
|
|
||||||
|
|
||||||
# FYI - cohere_chat looks quite unstable, even when testing locally
|
|
||||||
def test_chat_completion_cohere():
|
|
||||||
try:
|
|
||||||
litellm.set_verbose = True
|
|
||||||
messages = [
|
|
||||||
{
|
|
||||||
"role": "user",
|
|
||||||
"content": "Hey",
|
|
||||||
},
|
|
||||||
]
|
|
||||||
response = completion(
|
|
||||||
model="cohere_chat/command-r",
|
|
||||||
messages=messages,
|
|
||||||
max_tokens=10,
|
|
||||||
)
|
|
||||||
print(response)
|
|
||||||
except Exception as e:
|
|
||||||
pytest.fail(f"Error occurred: {e}")
|
|
||||||
|
|
||||||
|
|
||||||
def test_chat_completion_cohere_tool_calling():
|
|
||||||
try:
|
|
||||||
litellm.set_verbose = True
|
|
||||||
messages = [
|
|
||||||
{
|
|
||||||
"role": "user",
|
|
||||||
"content": "What is the weather like in Boston?",
|
|
||||||
},
|
|
||||||
]
|
|
||||||
response = completion(
|
|
||||||
model="cohere_chat/command-r",
|
|
||||||
messages=messages,
|
|
||||||
tools=[
|
|
||||||
{
|
|
||||||
"type": "function",
|
|
||||||
"function": {
|
|
||||||
"name": "get_current_weather",
|
|
||||||
"description": "Get the current weather in a given location",
|
|
||||||
"parameters": {
|
|
||||||
"type": "object",
|
|
||||||
"properties": {
|
|
||||||
"location": {
|
|
||||||
"type": "string",
|
|
||||||
"description": "The city and state, e.g. San Francisco, CA",
|
|
||||||
},
|
|
||||||
"unit": {
|
|
||||||
"type": "string",
|
|
||||||
"enum": ["celsius", "fahrenheit"],
|
|
||||||
},
|
|
||||||
},
|
|
||||||
"required": ["location"],
|
|
||||||
},
|
|
||||||
},
|
|
||||||
}
|
|
||||||
],
|
|
||||||
)
|
|
||||||
print(response)
|
|
||||||
except Exception as e:
|
|
||||||
pytest.fail(f"Error occurred: {e}")
|
|
||||||
|
|
||||||
# def get_current_weather(location, unit="fahrenheit"):
|
|
||||||
# """Get the current weather in a given location"""
|
|
||||||
# if "tokyo" in location.lower():
|
|
||||||
# return json.dumps({"location": "Tokyo", "temperature": "10", "unit": unit})
|
|
||||||
# elif "san francisco" in location.lower():
|
|
||||||
# return json.dumps({"location": "San Francisco", "temperature": "72", "unit": unit})
|
|
||||||
# elif "paris" in location.lower():
|
|
||||||
# return json.dumps({"location": "Paris", "temperature": "22", "unit": unit})
|
|
||||||
# else:
|
|
||||||
# return json.dumps({"location": location, "temperature": "unknown"})
|
|
||||||
|
|
||||||
# def test_chat_completion_cohere_tool_with_result_calling():
|
|
||||||
# # end to end cohere command-r with tool calling
|
|
||||||
# # Step 1 - Send available tools
|
|
||||||
# # Step 2 - Execute results
|
|
||||||
# # Step 3 - Send results to command-r
|
|
||||||
# try:
|
|
||||||
# litellm.set_verbose = True
|
|
||||||
# import json
|
|
||||||
|
|
||||||
# # Step 1 - Send available tools
|
|
||||||
# tools = [
|
|
||||||
# {
|
|
||||||
# "type": "function",
|
|
||||||
# "function": {
|
|
||||||
# "name": "get_current_weather",
|
|
||||||
# "description": "Get the current weather in a given location",
|
|
||||||
# "parameters": {
|
|
||||||
# "type": "object",
|
|
||||||
# "properties": {
|
|
||||||
# "location": {
|
|
||||||
# "type": "string",
|
|
||||||
# "description": "The city and state, e.g. San Francisco, CA",
|
|
||||||
# },
|
|
||||||
# "unit": {
|
|
||||||
# "type": "string",
|
|
||||||
# "enum": ["celsius", "fahrenheit"],
|
|
||||||
# },
|
|
||||||
# },
|
|
||||||
# "required": ["location"],
|
|
||||||
# },
|
|
||||||
# },
|
|
||||||
# }
|
|
||||||
# ]
|
|
||||||
|
|
||||||
# messages = [
|
|
||||||
# {
|
|
||||||
# "role": "user",
|
|
||||||
# "content": "What is the weather like in Boston?",
|
|
||||||
# },
|
|
||||||
# ]
|
|
||||||
# response = completion(
|
|
||||||
# model="cohere_chat/command-r",
|
|
||||||
# messages=messages,
|
|
||||||
# tools=tools,
|
|
||||||
# )
|
|
||||||
# print("Response with tools to call", response)
|
|
||||||
# print(response)
|
|
||||||
|
|
||||||
# # step 2 - Execute results
|
|
||||||
# tool_calls = response.tool_calls
|
|
||||||
|
|
||||||
# available_functions = {
|
|
||||||
# "get_current_weather": get_current_weather,
|
|
||||||
# } # only one function in this example, but you can have multiple
|
|
||||||
|
|
||||||
# for tool_call in tool_calls:
|
|
||||||
# function_name = tool_call.function.name
|
|
||||||
# function_to_call = available_functions[function_name]
|
|
||||||
# function_args = json.loads(tool_call.function.arguments)
|
|
||||||
# function_response = function_to_call(
|
|
||||||
# location=function_args.get("location"),
|
|
||||||
# unit=function_args.get("unit"),
|
|
||||||
# )
|
|
||||||
# messages.append(
|
|
||||||
# {
|
|
||||||
# "tool_call_id": tool_call.id,
|
|
||||||
# "role": "tool",
|
|
||||||
# "name": function_name,
|
|
||||||
# "content": function_response,
|
|
||||||
# }
|
|
||||||
# ) # extend conversation with function response
|
|
||||||
|
|
||||||
# print("messages with tool call results", messages)
|
|
||||||
|
|
||||||
# messages = [
|
|
||||||
# {
|
|
||||||
# "role": "user",
|
|
||||||
# "content": "What is the weather like in Boston?",
|
|
||||||
# },
|
|
||||||
# {
|
|
||||||
# "tool_call_id": "tool_1",
|
|
||||||
# "role": "tool",
|
|
||||||
# "name": "get_current_weather",
|
|
||||||
# "content": {"location": "San Francisco, CA", "unit": "fahrenheit", "temperature": "72"},
|
|
||||||
# },
|
|
||||||
# ]
|
|
||||||
# respone = completion(
|
|
||||||
# model="cohere_chat/command-r",
|
|
||||||
# messages=messages,
|
|
||||||
# tools=[
|
|
||||||
# {
|
|
||||||
# "type": "function",
|
|
||||||
# "function": {
|
|
||||||
# "name": "get_current_weather",
|
|
||||||
# "description": "Get the current weather in a given location",
|
|
||||||
# "parameters": {
|
|
||||||
# "type": "object",
|
|
||||||
# "properties": {
|
|
||||||
# "location": {
|
|
||||||
# "type": "string",
|
|
||||||
# "description": "The city and state, e.g. San Francisco, CA",
|
|
||||||
# },
|
|
||||||
# "unit": {
|
|
||||||
# "type": "string",
|
|
||||||
# "enum": ["celsius", "fahrenheit"],
|
|
||||||
# },
|
|
||||||
# },
|
|
||||||
# "required": ["location"],
|
|
||||||
# },
|
|
||||||
# },
|
|
||||||
# }
|
|
||||||
# ],
|
|
||||||
# )
|
|
||||||
# print(respone)
|
|
||||||
except Exception as e:
|
|
||||||
pytest.fail(f"Error occurred: {e}")
|
|
|
@ -46,11 +46,12 @@ def get_current_weather(location, unit="fahrenheit"):
|
||||||
"model",
|
"model",
|
||||||
[
|
[
|
||||||
"gpt-3.5-turbo-1106",
|
"gpt-3.5-turbo-1106",
|
||||||
# "mistral/mistral-large-latest",
|
"mistral/mistral-large-latest",
|
||||||
"claude-3-haiku-20240307",
|
"claude-3-haiku-20240307",
|
||||||
"gemini/gemini-1.5-pro",
|
"gemini/gemini-1.5-pro",
|
||||||
"anthropic.claude-3-sonnet-20240229-v1:0",
|
"anthropic.claude-3-sonnet-20240229-v1:0",
|
||||||
# "groq/llama3-8b-8192",
|
"groq/llama3-8b-8192",
|
||||||
|
"cohere_chat/command-r",
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
@pytest.mark.flaky(retries=3, delay=1)
|
@pytest.mark.flaky(retries=3, delay=1)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue