forked from phoenix/litellm-mirror
(fix) add some better load testing
This commit is contained in:
parent
48b9250a3d
commit
311918b99c
6 changed files with 270 additions and 14 deletions
|
@ -0,0 +1,20 @@
|
||||||
|
# Use the official Python image as the base image
|
||||||
|
FROM python:3.9-slim
|
||||||
|
|
||||||
|
# Set the working directory in the container
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Copy the Python requirements file
|
||||||
|
COPY requirements.txt .
|
||||||
|
|
||||||
|
# Install the Python dependencies
|
||||||
|
RUN pip install --no-cache-dir -r requirements.txt
|
||||||
|
|
||||||
|
# Copy the application code
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
# Expose the port the app will run on
|
||||||
|
EXPOSE 8090
|
||||||
|
|
||||||
|
# Start the application
|
||||||
|
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8090"]
|
59
litellm/proxy/proxy_load_test/litellm_router_proxy/main.py
Normal file
59
litellm/proxy/proxy_load_test/litellm_router_proxy/main.py
Normal file
|
@ -0,0 +1,59 @@
|
||||||
|
# import sys, os
|
||||||
|
# sys.path.insert(
|
||||||
|
# 0, os.path.abspath("../")
|
||||||
|
# ) # Adds the parent directory to the system path
|
||||||
|
from fastapi import FastAPI, Request, status, HTTPException, Depends
|
||||||
|
from fastapi.responses import StreamingResponse
|
||||||
|
from fastapi.security import OAuth2PasswordBearer
|
||||||
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
|
import uuid
|
||||||
|
import litellm
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
|
||||||
|
app.add_middleware(
|
||||||
|
CORSMiddleware,
|
||||||
|
allow_origins=["*"],
|
||||||
|
allow_credentials=True,
|
||||||
|
allow_methods=["*"],
|
||||||
|
allow_headers=["*"],
|
||||||
|
)
|
||||||
|
|
||||||
|
litellm_router = litellm.Router(
|
||||||
|
model_list=[
|
||||||
|
{
|
||||||
|
"model_name": "anything", # model alias -> loadbalance between models with same `model_name`
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "openai/anything", # actual model name
|
||||||
|
"api_key": "sk-1234",
|
||||||
|
"api_base": "https://exampleopenaiendpoint-production.up.railway.app/",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# for completion
|
||||||
|
@app.post("/chat/completions")
|
||||||
|
@app.post("/v1/chat/completions")
|
||||||
|
async def completion(request: Request):
|
||||||
|
# this proxy uses the OpenAI SDK to call a fixed endpoint
|
||||||
|
|
||||||
|
response = await litellm_router.acompletion(
|
||||||
|
model="anything",
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "hello who are you",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
# run this on 8090, 8091, 8092 and 8093
|
||||||
|
uvicorn.run(app, host="0.0.0.0", port=8090)
|
54
litellm/proxy/proxy_load_test/simple_litellm_proxy.py
Normal file
54
litellm/proxy/proxy_load_test/simple_litellm_proxy.py
Normal file
|
@ -0,0 +1,54 @@
|
||||||
|
# import sys, os
|
||||||
|
# sys.path.insert(
|
||||||
|
# 0, os.path.abspath("../")
|
||||||
|
# ) # Adds the parent directory to the system path
|
||||||
|
from fastapi import FastAPI, Request, status, HTTPException, Depends
|
||||||
|
from fastapi.responses import StreamingResponse
|
||||||
|
from fastapi.security import OAuth2PasswordBearer
|
||||||
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
|
import uuid
|
||||||
|
import litellm
|
||||||
|
import openai
|
||||||
|
from openai import AsyncOpenAI
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
|
||||||
|
app.add_middleware(
|
||||||
|
CORSMiddleware,
|
||||||
|
allow_origins=["*"],
|
||||||
|
allow_credentials=True,
|
||||||
|
allow_methods=["*"],
|
||||||
|
allow_headers=["*"],
|
||||||
|
)
|
||||||
|
|
||||||
|
litellm_client = AsyncOpenAI(
|
||||||
|
base_url="https://exampleopenaiendpoint-production.up.railway.app/",
|
||||||
|
api_key="sk-1234",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# for completion
|
||||||
|
@app.post("/chat/completions")
|
||||||
|
@app.post("/v1/chat/completions")
|
||||||
|
async def completion(request: Request):
|
||||||
|
# this proxy uses the OpenAI SDK to call a fixed endpoint
|
||||||
|
|
||||||
|
response = await litellm.acompletion(
|
||||||
|
model="openai/anything",
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "hello who are you",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
client=litellm_client,
|
||||||
|
)
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
# run this on 8090, 8091, 8092 and 8093
|
||||||
|
uvicorn.run(app, host="0.0.0.0", port=8090)
|
59
litellm/proxy/proxy_load_test/simple_litellm_router_proxy.py
Normal file
59
litellm/proxy/proxy_load_test/simple_litellm_router_proxy.py
Normal file
|
@ -0,0 +1,59 @@
|
||||||
|
# import sys, os
|
||||||
|
# sys.path.insert(
|
||||||
|
# 0, os.path.abspath("../")
|
||||||
|
# ) # Adds the parent directory to the system path
|
||||||
|
from fastapi import FastAPI, Request, status, HTTPException, Depends
|
||||||
|
from fastapi.responses import StreamingResponse
|
||||||
|
from fastapi.security import OAuth2PasswordBearer
|
||||||
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
|
import uuid
|
||||||
|
import litellm
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
|
||||||
|
app.add_middleware(
|
||||||
|
CORSMiddleware,
|
||||||
|
allow_origins=["*"],
|
||||||
|
allow_credentials=True,
|
||||||
|
allow_methods=["*"],
|
||||||
|
allow_headers=["*"],
|
||||||
|
)
|
||||||
|
|
||||||
|
litellm_router = litellm.Router(
|
||||||
|
model_list=[
|
||||||
|
{
|
||||||
|
"model_name": "anything", # model alias -> loadbalance between models with same `model_name`
|
||||||
|
"litellm_params": { # params for litellm completion/embedding call
|
||||||
|
"model": "openai/anything", # actual model name
|
||||||
|
"api_key": "sk-1234",
|
||||||
|
"api_base": "https://exampleopenaiendpoint-production.up.railway.app/",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# for completion
|
||||||
|
@app.post("/chat/completions")
|
||||||
|
@app.post("/v1/chat/completions")
|
||||||
|
async def completion(request: Request):
|
||||||
|
# this proxy uses the OpenAI SDK to call a fixed endpoint
|
||||||
|
|
||||||
|
response = await litellm_router.acompletion(
|
||||||
|
model="anything",
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "hello who are you",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
# run this on 8090, 8091, 8092 and 8093
|
||||||
|
uvicorn.run(app, host="0.0.0.0", port=8090)
|
52
litellm/proxy/proxy_load_test/simple_proxy.py
Normal file
52
litellm/proxy/proxy_load_test/simple_proxy.py
Normal file
|
@ -0,0 +1,52 @@
|
||||||
|
# import sys, os
|
||||||
|
# sys.path.insert(
|
||||||
|
# 0, os.path.abspath("../")
|
||||||
|
# ) # Adds the parent directory to the system path
|
||||||
|
from fastapi import FastAPI, Request, status, HTTPException, Depends
|
||||||
|
from fastapi.responses import StreamingResponse
|
||||||
|
from fastapi.security import OAuth2PasswordBearer
|
||||||
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
|
import uuid
|
||||||
|
import openai
|
||||||
|
from openai import AsyncOpenAI
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
|
||||||
|
app.add_middleware(
|
||||||
|
CORSMiddleware,
|
||||||
|
allow_origins=["*"],
|
||||||
|
allow_credentials=True,
|
||||||
|
allow_methods=["*"],
|
||||||
|
allow_headers=["*"],
|
||||||
|
)
|
||||||
|
|
||||||
|
litellm_client = AsyncOpenAI(
|
||||||
|
base_url="https://exampleopenaiendpoint-production.up.railway.app/",
|
||||||
|
api_key="sk-1234",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# for completion
|
||||||
|
@app.post("/chat/completions")
|
||||||
|
@app.post("/v1/chat/completions")
|
||||||
|
async def completion(request: Request):
|
||||||
|
# this proxy uses the OpenAI SDK to call a fixed endpoint
|
||||||
|
|
||||||
|
response = await litellm_client.chat.completions.create(
|
||||||
|
model="anything",
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "hello who are you",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
# run this on 8090, 8091, 8092 and 8093
|
||||||
|
uvicorn.run(app, host="0.0.0.0", port=8090)
|
|
@ -1,56 +1,68 @@
|
||||||
import time, asyncio, os
|
import time
|
||||||
|
import asyncio
|
||||||
|
import os
|
||||||
from openai import AsyncOpenAI, AsyncAzureOpenAI
|
from openai import AsyncOpenAI, AsyncAzureOpenAI
|
||||||
import uuid
|
import uuid
|
||||||
import traceback
|
import traceback
|
||||||
from large_text import text
|
from large_text import text
|
||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
|
from statistics import mean, median
|
||||||
|
|
||||||
litellm_client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234")
|
litellm_client = AsyncOpenAI(base_url="http://0.0.0.0:4000/", api_key="sk-1234")
|
||||||
|
|
||||||
|
|
||||||
async def litellm_completion():
|
async def litellm_completion():
|
||||||
# Your existing code for litellm_completion goes here
|
|
||||||
try:
|
try:
|
||||||
|
start_time = time.time()
|
||||||
response = await litellm_client.chat.completions.create(
|
response = await litellm_client.chat.completions.create(
|
||||||
model="fake_openai",
|
model="fake-openai-endpoint",
|
||||||
messages=[
|
messages=[
|
||||||
{
|
{
|
||||||
"role": "user",
|
"role": "user",
|
||||||
"content": f"{text}. Who was alexander the great? {uuid.uuid4()}",
|
"content": f"This is a test{uuid.uuid4()}",
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
user="my-new-end-user-1",
|
user="my-new-end-user-1",
|
||||||
)
|
)
|
||||||
return response
|
end_time = time.time()
|
||||||
|
latency = end_time - start_time
|
||||||
|
print("response time=", latency)
|
||||||
|
return response, latency
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
# If there's an exception, log the error message
|
|
||||||
with open("error_log.txt", "a") as error_log:
|
with open("error_log.txt", "a") as error_log:
|
||||||
error_log.write(f"Error during completion: {str(e)}\n")
|
error_log.write(f"Error during completion: {str(e)}\n")
|
||||||
pass
|
return None, 0
|
||||||
|
|
||||||
|
|
||||||
async def main():
|
async def main():
|
||||||
for i in range(3):
|
latencies = []
|
||||||
|
for i in range(5):
|
||||||
start = time.time()
|
start = time.time()
|
||||||
n = 10 # Number of concurrent tasks
|
n = 100 # Number of concurrent tasks
|
||||||
tasks = [litellm_completion() for _ in range(n)]
|
tasks = [litellm_completion() for _ in range(n)]
|
||||||
|
|
||||||
chat_completions = await asyncio.gather(*tasks)
|
chat_completions = await asyncio.gather(*tasks)
|
||||||
|
|
||||||
successful_completions = [c for c in chat_completions if c is not None]
|
successful_completions = [c for c, l in chat_completions if c is not None]
|
||||||
|
completion_latencies = [l for c, l in chat_completions if c is not None]
|
||||||
|
latencies.extend(completion_latencies)
|
||||||
|
|
||||||
# Write errors to error_log.txt
|
|
||||||
with open("error_log.txt", "a") as error_log:
|
with open("error_log.txt", "a") as error_log:
|
||||||
for completion in chat_completions:
|
for completion, latency in chat_completions:
|
||||||
if isinstance(completion, str):
|
if isinstance(completion, str):
|
||||||
error_log.write(completion + "\n")
|
error_log.write(completion + "\n")
|
||||||
|
|
||||||
print(n, time.time() - start, len(successful_completions))
|
print(n, time.time() - start, len(successful_completions))
|
||||||
|
|
||||||
|
if latencies:
|
||||||
|
average_latency = mean(latencies)
|
||||||
|
median_latency = median(latencies)
|
||||||
|
print(f"Average Latency per Response: {average_latency} seconds")
|
||||||
|
print(f"Median Latency per Response: {median_latency} seconds")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# Blank out contents of error_log.txt
|
|
||||||
open("error_log.txt", "w").close()
|
open("error_log.txt", "w").close()
|
||||||
|
|
||||||
asyncio.run(main())
|
asyncio.run(main())
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue