feat(proxy_server.py): working /v1/messages with config.yaml

Adds async router support for adapter_completion call
This commit is contained in:
Krrish Dholakia 2024-07-10 18:53:54 -07:00
parent 2f8dbbeb97
commit 31829855c0
7 changed files with 362 additions and 14 deletions

View file

@ -5045,23 +5045,187 @@ async def moderations(
dependencies=[Depends(user_api_key_auth)],
response_model=AnthropicResponse,
)
async def anthropic_response(data: AnthropicMessagesRequest):
async def anthropic_response(
anthropic_data: AnthropicMessagesRequest,
fastapi_response: Response,
request: Request,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
from litellm import adapter_completion
from litellm.adapters.anthropic_adapter import anthropic_adapter
litellm.adapters = [{"id": "anthropic", "adapter": anthropic_adapter}]
response: Optional[BaseModel] = adapter_completion(adapter_id="anthropic", **data)
global user_temperature, user_request_timeout, user_max_tokens, user_api_base
data: dict = {**anthropic_data, "adapter_id": "anthropic"}
try:
data["model"] = (
general_settings.get("completion_model", None) # server default
or user_model # model name passed via cli args
or data["model"] # default passed in http request
)
if user_model:
data["model"] = user_model
if response is None:
raise Exception("Response is None.")
elif not isinstance(response, AnthropicResponse):
raise Exception(
"Invalid model response={}. Not in 'AnthropicResponse' format".format(
response
data = await add_litellm_data_to_request(
data=data, # type: ignore
request=request,
general_settings=general_settings,
user_api_key_dict=user_api_key_dict,
version=version,
proxy_config=proxy_config,
)
# override with user settings, these are params passed via cli
if user_temperature:
data["temperature"] = user_temperature
if user_request_timeout:
data["request_timeout"] = user_request_timeout
if user_max_tokens:
data["max_tokens"] = user_max_tokens
if user_api_base:
data["api_base"] = user_api_base
### MODEL ALIAS MAPPING ###
# check if model name in model alias map
# get the actual model name
if data["model"] in litellm.model_alias_map:
data["model"] = litellm.model_alias_map[data["model"]]
### CALL HOOKS ### - modify incoming data before calling the model
data = await proxy_logging_obj.pre_call_hook( # type: ignore
user_api_key_dict=user_api_key_dict, data=data, call_type="text_completion"
)
### ROUTE THE REQUESTs ###
router_model_names = llm_router.model_names if llm_router is not None else []
# skip router if user passed their key
if "api_key" in data:
llm_response = asyncio.create_task(litellm.aadapter_completion(**data))
elif (
llm_router is not None and data["model"] in router_model_names
): # model in router model list
llm_response = asyncio.create_task(llm_router.aadapter_completion(**data))
elif (
llm_router is not None
and llm_router.model_group_alias is not None
and data["model"] in llm_router.model_group_alias
): # model set in model_group_alias
llm_response = asyncio.create_task(llm_router.aadapter_completion(**data))
elif (
llm_router is not None and data["model"] in llm_router.deployment_names
): # model in router deployments, calling a specific deployment on the router
llm_response = asyncio.create_task(
llm_router.aadapter_completion(**data, specific_deployment=True)
)
elif (
llm_router is not None and data["model"] in llm_router.get_model_ids()
): # model in router model list
llm_response = asyncio.create_task(llm_router.aadapter_completion(**data))
elif (
llm_router is not None
and data["model"] not in router_model_names
and llm_router.default_deployment is not None
): # model in router deployments, calling a specific deployment on the router
llm_response = asyncio.create_task(llm_router.aadapter_completion(**data))
elif user_model is not None: # `litellm --model <your-model-name>`
llm_response = asyncio.create_task(litellm.aadapter_completion(**data))
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={
"error": "completion: Invalid model name passed in model="
+ data.get("model", "")
},
)
# Await the llm_response task
response = await llm_response
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
response_cost = hidden_params.get("response_cost", None) or ""
### ALERTING ###
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
return response
verbose_proxy_logger.debug("final response: %s", response)
fastapi_response.headers.update(
get_custom_headers(
user_api_key_dict=user_api_key_dict,
model_id=model_id,
cache_key=cache_key,
api_base=api_base,
version=version,
response_cost=response_cost,
)
)
verbose_proxy_logger.info("\nResponse from Litellm:\n{}".format(response))
return response
except RejectedRequestError as e:
_data = e.request_data
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict,
original_exception=e,
request_data=_data,
)
if _data.get("stream", None) is not None and _data["stream"] == True:
_chat_response = litellm.ModelResponse()
_usage = litellm.Usage(
prompt_tokens=0,
completion_tokens=0,
total_tokens=0,
)
_chat_response.usage = _usage # type: ignore
_chat_response.choices[0].message.content = e.message # type: ignore
_iterator = litellm.utils.ModelResponseIterator(
model_response=_chat_response, convert_to_delta=True
)
_streaming_response = litellm.TextCompletionStreamWrapper(
completion_stream=_iterator,
model=_data.get("model", ""),
)
selected_data_generator = select_data_generator(
response=_streaming_response,
user_api_key_dict=user_api_key_dict,
request_data=data,
)
return StreamingResponse(
selected_data_generator,
media_type="text/event-stream",
headers={},
)
else:
_response = litellm.TextCompletionResponse()
_response.choices[0].text = e.message
return _response
except Exception as e:
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
verbose_proxy_logger.error(
"litellm.proxy.proxy_server.completion(): Exception occured - {}".format(
str(e)
)
)
verbose_proxy_logger.debug(traceback.format_exc())
error_msg = f"{str(e)}"
raise ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)
#### DEV UTILS ####