forked from phoenix/litellm-mirror
refactor: move all testing to top-level of repo
Closes https://github.com/BerriAI/litellm/issues/486
This commit is contained in:
parent
5403c5828c
commit
3560f0ef2c
213 changed files with 74 additions and 217 deletions
205
tests/local_testing/test_router_batch_completion.py
Normal file
205
tests/local_testing/test_router_batch_completion.py
Normal file
|
@ -0,0 +1,205 @@
|
|||
#### What this tests ####
|
||||
# This tests litellm router with batch completion
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import traceback
|
||||
|
||||
import openai
|
||||
import pytest
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
import os
|
||||
from collections import defaultdict
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
import httpx
|
||||
from dotenv import load_dotenv
|
||||
|
||||
import litellm
|
||||
from litellm import Router
|
||||
from litellm.router import Deployment, LiteLLM_Params, ModelInfo
|
||||
|
||||
load_dotenv()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("mode", ["all_responses", "fastest_response"])
|
||||
@pytest.mark.asyncio
|
||||
async def test_batch_completion_multiple_models(mode):
|
||||
litellm.set_verbose = True
|
||||
|
||||
router = litellm.Router(
|
||||
model_list=[
|
||||
{
|
||||
"model_name": "gpt-3.5-turbo",
|
||||
"litellm_params": {
|
||||
"model": "gpt-3.5-turbo",
|
||||
},
|
||||
},
|
||||
{
|
||||
"model_name": "groq-llama",
|
||||
"litellm_params": {
|
||||
"model": "groq/llama3-8b-8192",
|
||||
},
|
||||
},
|
||||
]
|
||||
)
|
||||
|
||||
if mode == "all_responses":
|
||||
response = await router.abatch_completion(
|
||||
models=["gpt-3.5-turbo", "groq-llama"],
|
||||
messages=[
|
||||
{"role": "user", "content": "is litellm becoming a better product ?"}
|
||||
],
|
||||
max_tokens=15,
|
||||
)
|
||||
|
||||
print(response)
|
||||
assert len(response) == 2
|
||||
|
||||
models_in_responses = []
|
||||
print(f"response: {response}")
|
||||
for individual_response in response:
|
||||
_model = individual_response["model"]
|
||||
models_in_responses.append(_model)
|
||||
|
||||
# assert both models are different
|
||||
assert models_in_responses[0] != models_in_responses[1]
|
||||
elif mode == "fastest_response":
|
||||
from openai.types.chat.chat_completion import ChatCompletion
|
||||
|
||||
response = await router.abatch_completion_fastest_response(
|
||||
model="gpt-3.5-turbo, groq-llama",
|
||||
messages=[
|
||||
{"role": "user", "content": "is litellm becoming a better product ?"}
|
||||
],
|
||||
max_tokens=15,
|
||||
)
|
||||
|
||||
ChatCompletion.model_validate(response.model_dump(), strict=True)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_batch_completion_fastest_response_unit_test():
|
||||
"""
|
||||
Unit test to confirm fastest response will always return the response which arrives earliest.
|
||||
|
||||
2 models -> 1 is cached, the other is a real llm api call => assert cached response always returned
|
||||
"""
|
||||
litellm.set_verbose = True
|
||||
|
||||
router = litellm.Router(
|
||||
model_list=[
|
||||
{
|
||||
"model_name": "gpt-4",
|
||||
"litellm_params": {
|
||||
"model": "gpt-4",
|
||||
},
|
||||
"model_info": {"id": "1"},
|
||||
},
|
||||
{
|
||||
"model_name": "gpt-3.5-turbo",
|
||||
"litellm_params": {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"mock_response": "This is a fake response",
|
||||
},
|
||||
"model_info": {"id": "2"},
|
||||
},
|
||||
]
|
||||
)
|
||||
|
||||
response = await router.abatch_completion_fastest_response(
|
||||
model="gpt-4, gpt-3.5-turbo",
|
||||
messages=[
|
||||
{"role": "user", "content": "is litellm becoming a better product ?"}
|
||||
],
|
||||
max_tokens=500,
|
||||
)
|
||||
|
||||
assert response._hidden_params["model_id"] == "2"
|
||||
assert response.choices[0].message.content == "This is a fake response"
|
||||
print(f"response: {response}")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_batch_completion_fastest_response_streaming():
|
||||
litellm.set_verbose = True
|
||||
|
||||
router = litellm.Router(
|
||||
model_list=[
|
||||
{
|
||||
"model_name": "gpt-3.5-turbo",
|
||||
"litellm_params": {
|
||||
"model": "gpt-3.5-turbo",
|
||||
},
|
||||
},
|
||||
{
|
||||
"model_name": "groq-llama",
|
||||
"litellm_params": {
|
||||
"model": "groq/llama3-8b-8192",
|
||||
},
|
||||
},
|
||||
]
|
||||
)
|
||||
|
||||
from openai.types.chat.chat_completion_chunk import ChatCompletionChunk
|
||||
|
||||
response = await router.abatch_completion_fastest_response(
|
||||
model="gpt-3.5-turbo, groq-llama",
|
||||
messages=[
|
||||
{"role": "user", "content": "is litellm becoming a better product ?"}
|
||||
],
|
||||
max_tokens=15,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
async for chunk in response:
|
||||
ChatCompletionChunk.model_validate(chunk.model_dump(), strict=True)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_batch_completion_multiple_models_multiple_messages():
|
||||
litellm.set_verbose = True
|
||||
|
||||
router = litellm.Router(
|
||||
model_list=[
|
||||
{
|
||||
"model_name": "gpt-3.5-turbo",
|
||||
"litellm_params": {
|
||||
"model": "gpt-3.5-turbo",
|
||||
},
|
||||
},
|
||||
{
|
||||
"model_name": "groq-llama",
|
||||
"litellm_params": {
|
||||
"model": "groq/llama3-8b-8192",
|
||||
},
|
||||
},
|
||||
]
|
||||
)
|
||||
|
||||
response = await router.abatch_completion(
|
||||
models=["gpt-3.5-turbo", "groq-llama"],
|
||||
messages=[
|
||||
[{"role": "user", "content": "is litellm becoming a better product ?"}],
|
||||
[{"role": "user", "content": "who is this"}],
|
||||
],
|
||||
max_tokens=15,
|
||||
)
|
||||
|
||||
print("response from batches =", response)
|
||||
assert len(response) == 2
|
||||
assert len(response[0]) == 2
|
||||
assert isinstance(response[0][0], litellm.ModelResponse)
|
||||
|
||||
# models_in_responses = []
|
||||
# for individual_response in response:
|
||||
# _model = individual_response["model"]
|
||||
# models_in_responses.append(_model)
|
||||
|
||||
# # assert both models are different
|
||||
# assert models_in_responses[0] != models_in_responses[1]
|
Loading…
Add table
Add a link
Reference in a new issue