forked from phoenix/litellm-mirror
(test) load test q
This commit is contained in:
parent
6aa8b41fb3
commit
359f542c10
1 changed files with 121 additions and 0 deletions
121
litellm/proxy/tests/load_test_q.py
Normal file
121
litellm/proxy/tests/load_test_q.py
Normal file
|
@ -0,0 +1,121 @@
|
||||||
|
import requests
|
||||||
|
import time
|
||||||
|
import os
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
|
||||||
|
# Set the base URL as needed
|
||||||
|
# base_url = "https://api.litellm.ai"
|
||||||
|
# Uncomment the line below if you want to switch to the local server
|
||||||
|
base_url = "http://0.0.0.0:8000"
|
||||||
|
|
||||||
|
# Step 1 Add a config to the proxy, generate a temp key
|
||||||
|
config = {
|
||||||
|
"model_list": [
|
||||||
|
{
|
||||||
|
"model_name": "gpt-3.5-turbo",
|
||||||
|
"litellm_params": {
|
||||||
|
"model": "gpt-3.5-turbo",
|
||||||
|
"api_key": os.environ['OPENAI_API_KEY'],
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"model_name": "gpt-3.5-turbo",
|
||||||
|
"litellm_params": {
|
||||||
|
"model": "azure/chatgpt-v-2",
|
||||||
|
"api_key": os.environ['AZURE_API_KEY'],
|
||||||
|
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com/",
|
||||||
|
"api_version": "2023-07-01-preview"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
print("STARTING LOAD TEST Q")
|
||||||
|
print(os.environ['AZURE_API_KEY'])
|
||||||
|
|
||||||
|
response = requests.post(
|
||||||
|
url=f"{base_url}/key/generate",
|
||||||
|
json={
|
||||||
|
"config": config,
|
||||||
|
"duration": "30d" # default to 30d, set it to 30m if you want a temp key
|
||||||
|
},
|
||||||
|
headers={
|
||||||
|
"Authorization": "Bearer sk-hosted-litellm"
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
print("\nresponse from generating key", response.text)
|
||||||
|
print("\n json response from gen key", response.json())
|
||||||
|
|
||||||
|
generated_key = response.json()["key"]
|
||||||
|
print("\ngenerated key for proxy", generated_key)
|
||||||
|
|
||||||
|
|
||||||
|
# Step 2: Queue 50 requests to the proxy, using your generated_key
|
||||||
|
|
||||||
|
import concurrent.futures
|
||||||
|
|
||||||
|
def create_job_and_poll(request_num):
|
||||||
|
print(f"Creating a job on the proxy for request {request_num}")
|
||||||
|
job_response = requests.post(
|
||||||
|
url=f"{base_url}/queue/request",
|
||||||
|
json={
|
||||||
|
'model': 'gpt-3.5-turbo',
|
||||||
|
'messages': [
|
||||||
|
{'role': 'system', 'content': 'write a short poem'},
|
||||||
|
],
|
||||||
|
},
|
||||||
|
headers={
|
||||||
|
"Authorization": f"Bearer {generated_key}"
|
||||||
|
}
|
||||||
|
)
|
||||||
|
print(job_response.status_code)
|
||||||
|
print(job_response.text)
|
||||||
|
print("\nResponse from creating job", job_response.text)
|
||||||
|
job_response = job_response.json()
|
||||||
|
job_id = job_response["id"]
|
||||||
|
polling_url = job_response["url"]
|
||||||
|
polling_url = f"{base_url}{polling_url}"
|
||||||
|
print(f"\nCreated Job {request_num}, Polling Url {polling_url}")
|
||||||
|
|
||||||
|
# Poll each request
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
print(f"\nPolling URL for request {request_num}", polling_url)
|
||||||
|
polling_response = requests.get(
|
||||||
|
url=polling_url,
|
||||||
|
headers={
|
||||||
|
"Authorization": f"Bearer {generated_key}"
|
||||||
|
}
|
||||||
|
)
|
||||||
|
print(f"\nResponse from polling url for request {request_num}", polling_response.text)
|
||||||
|
polling_response = polling_response.json()
|
||||||
|
status = polling_response.get("status", None)
|
||||||
|
if status == "finished":
|
||||||
|
llm_response = polling_response["result"]
|
||||||
|
print(f"LLM Response for request {request_num}")
|
||||||
|
print(llm_response)
|
||||||
|
# Write the llm_response to load_test_log.txt
|
||||||
|
try:
|
||||||
|
with open("load_test_log.txt", "a") as response_file:
|
||||||
|
response_file.write(
|
||||||
|
f"HI"
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
print("GOT EXCEPTION", e)
|
||||||
|
break
|
||||||
|
time.sleep(0.5)
|
||||||
|
except Exception as e:
|
||||||
|
print("got exception when polling", e)
|
||||||
|
|
||||||
|
# Number of requests
|
||||||
|
num_requests = 50
|
||||||
|
|
||||||
|
# Use ThreadPoolExecutor for parallel execution
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=num_requests) as executor:
|
||||||
|
# Create and poll each request in parallel
|
||||||
|
futures = [executor.submit(create_job_and_poll, i) for i in range(num_requests)]
|
||||||
|
|
||||||
|
# Wait for all futures to complete
|
||||||
|
concurrent.futures.wait(futures)
|
Loading…
Add table
Add a link
Reference in a new issue