support acompletion + stream for ollama

This commit is contained in:
ishaan-jaff 2023-09-21 10:39:15 -07:00
parent 4fa9b19af7
commit 35bb6f5a50
2 changed files with 42 additions and 2 deletions

View file

@ -75,7 +75,7 @@ async def acompletion(*args, **kwargs):
loop = asyncio.get_event_loop()
# Use a partial function to pass your keyword arguments
func = partial(completion, *args, **kwargs)
func = partial(completion, *args, **kwargs, acompletion=True)
# Add the context to the function
ctx = contextvars.copy_context()
@ -180,6 +180,7 @@ def completion(
fallbacks=[],
caching = False,
cache_params = {}, # optional to specify metadata for caching
acompletion=False,
) -> ModelResponse:
"""
Perform a completion() using any of litellm supported llms (example gpt-4, gpt-3.5-turbo, claude-2, command-nightly)
@ -215,7 +216,7 @@ def completion(
"""
if mock_response:
return mock_completion(model, messages, stream=stream, mock_response=mock_response)
args = locals()
try:
logging = litellm_logging_obj
@ -928,6 +929,10 @@ def completion(
logging.pre_call(
input=prompt, api_key=None, additional_args={"endpoint": endpoint}
)
if acompletion == True:
async_generator = ollama.async_get_ollama_response_stream(endpoint, model, prompt)
return async_generator
generator = ollama.get_ollama_response_stream(endpoint, model, prompt)
if optional_params.get("stream", False) == True:
# assume all ollama responses are streamed