forked from phoenix/litellm-mirror
support acompletion + stream for ollama
This commit is contained in:
parent
4fa9b19af7
commit
35bb6f5a50
2 changed files with 42 additions and 2 deletions
|
@ -1,5 +1,6 @@
|
|||
import requests
|
||||
import json
|
||||
from async_generator import async_generator, yield_
|
||||
|
||||
# ollama implementation
|
||||
def get_ollama_response_stream(
|
||||
|
@ -33,3 +34,37 @@ def get_ollama_response_stream(
|
|||
except Exception as e:
|
||||
print(f"Error decoding JSON: {e}")
|
||||
session.close()
|
||||
|
||||
# ollama implementation
|
||||
@async_generator
|
||||
async def async_get_ollama_response_stream(
|
||||
api_base="http://localhost:11434",
|
||||
model="llama2",
|
||||
prompt="Why is the sky blue?"
|
||||
):
|
||||
url = f"{api_base}/api/generate"
|
||||
data = {
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
}
|
||||
session = requests.Session()
|
||||
|
||||
with session.post(url, json=data, stream=True) as resp:
|
||||
for line in resp.iter_lines():
|
||||
if line:
|
||||
try:
|
||||
json_chunk = line.decode("utf-8")
|
||||
chunks = json_chunk.split("\n")
|
||||
for chunk in chunks:
|
||||
if chunk.strip() != "":
|
||||
j = json.loads(chunk)
|
||||
if "response" in j:
|
||||
completion_obj = {
|
||||
"role": "assistant",
|
||||
"content": "",
|
||||
}
|
||||
completion_obj["content"] = j["response"]
|
||||
await yield_({"choices": [{"delta": completion_obj}]})
|
||||
except Exception as e:
|
||||
print(f"Error decoding JSON: {e}")
|
||||
session.close()
|
|
@ -75,7 +75,7 @@ async def acompletion(*args, **kwargs):
|
|||
loop = asyncio.get_event_loop()
|
||||
|
||||
# Use a partial function to pass your keyword arguments
|
||||
func = partial(completion, *args, **kwargs)
|
||||
func = partial(completion, *args, **kwargs, acompletion=True)
|
||||
|
||||
# Add the context to the function
|
||||
ctx = contextvars.copy_context()
|
||||
|
@ -180,6 +180,7 @@ def completion(
|
|||
fallbacks=[],
|
||||
caching = False,
|
||||
cache_params = {}, # optional to specify metadata for caching
|
||||
acompletion=False,
|
||||
) -> ModelResponse:
|
||||
"""
|
||||
Perform a completion() using any of litellm supported llms (example gpt-4, gpt-3.5-turbo, claude-2, command-nightly)
|
||||
|
@ -928,6 +929,10 @@ def completion(
|
|||
logging.pre_call(
|
||||
input=prompt, api_key=None, additional_args={"endpoint": endpoint}
|
||||
)
|
||||
if acompletion == True:
|
||||
async_generator = ollama.async_get_ollama_response_stream(endpoint, model, prompt)
|
||||
return async_generator
|
||||
|
||||
generator = ollama.get_ollama_response_stream(endpoint, model, prompt)
|
||||
if optional_params.get("stream", False) == True:
|
||||
# assume all ollama responses are streamed
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue