(feat) v0 adding cloudflare

This commit is contained in:
ishaan-jaff 2023-12-29 09:32:29 +05:30
parent daf32f3bd4
commit 367e9913dc
3 changed files with 234 additions and 0 deletions

View file

@ -44,6 +44,7 @@ huggingface_key: Optional[str] = None
vertex_project: Optional[str] = None
vertex_location: Optional[str] = None
togetherai_api_key: Optional[str] = None
cloudflare_api_key: Optional[str] = None
baseten_key: Optional[str] = None
aleph_alpha_key: Optional[str] = None
nlp_cloud_key: Optional[str] = None
@ -390,6 +391,7 @@ provider_list: List = [
"mistral",
"maritalk",
"voyage",
"cloudflare",
"custom", # custom apis
]
@ -491,6 +493,7 @@ from .llms.replicate import ReplicateConfig
from .llms.cohere import CohereConfig
from .llms.ai21 import AI21Config
from .llms.together_ai import TogetherAIConfig
from .llms.cloudflare import CloudflareConfig
from .llms.palm import PalmConfig
from .llms.gemini import GeminiConfig
from .llms.nlp_cloud import NLPCloudConfig

185
litellm/llms/cloudflare.py Normal file
View file

@ -0,0 +1,185 @@
import os, types
import json
from enum import Enum
import requests
import time
from typing import Callable, Optional
import litellm
import httpx
from litellm.utils import ModelResponse, Usage
from .prompt_templates.factory import prompt_factory, custom_prompt
class CloudflareError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(method="POST", url="https://api.cloudflare.com")
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class CloudflareConfig:
max_tokens: Optional[int] = None
def __init__(
self,
max_tokens: Optional[int] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def validate_environment(api_key):
if api_key is None:
raise ValueError(
"Missing CloudflareError API Key - A call is being made to cloudflare but no key is set either in the environment variables or via params"
)
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": "Bearer " + api_key,
}
return headers
def completion(
model: str,
messages: list,
api_base: str,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
custom_prompt_dict={},
optional_params=None,
litellm_params=None,
logger_fn=None,
):
headers = validate_environment(api_key)
## Load Config
config = litellm.CloudflareConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > togetherai_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
print_verbose(f"CUSTOM PROMPT DICT: {custom_prompt_dict}; model: {model}")
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", {}),
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
bos_token=model_prompt_details.get("bos_token", ""),
eos_token=model_prompt_details.get("eos_token", ""),
messages=messages,
)
else:
prompt = prompt_factory(
model=model,
messages=messages,
api_key=api_key,
custom_llm_provider="together_ai",
) # api key required to query together ai model list
data = {
"model": model,
"prompt": prompt,
"request_type": "language-model-inference",
**optional_params,
}
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"headers": headers,
"api_base": api_base,
},
)
## COMPLETION CALL
if "stream_tokens" in optional_params and optional_params["stream_tokens"] == True:
response = requests.post(
api_base,
headers=headers,
data=json.dumps(data),
stream=optional_params["stream_tokens"],
)
return response.iter_lines()
else:
response = requests.post(api_base, headers=headers, data=json.dumps(data))
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
if response.status_code != 200:
raise CloudflareError(
status_code=response.status_code, message=response.text
)
completion_response = response.json()
if len(completion_response["output"]["choices"][0]["text"]) >= 0:
model_response["choices"][0]["message"]["content"] = completion_response[
"output"
]["choices"][0]["text"]
## CALCULATING USAGE
print_verbose(
f"CALCULATING TOGETHERAI TOKEN USAGE. Model Response: {model_response}; model_response['choices'][0]['message'].get('content', ''): {model_response['choices'][0]['message'].get('content', None)}"
)
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
if "finish_reason" in completion_response["output"]["choices"][0]:
model_response.choices[0].finish_reason = completion_response["output"][
"choices"
][0]["finish_reason"]
model_response["created"] = int(time.time())
model_response["model"] = "together_ai/" + model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
model_response.usage = usage
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass

View file

@ -50,6 +50,7 @@ from .llms import (
vllm,
ollama,
ollama_chat,
cloudflare,
cohere,
petals,
oobabooga,
@ -1564,6 +1565,51 @@ def completion(
return generator
response = generator
elif custom_llm_provider == "cloudflare":
api_key = (
api_key
or litellm.cloudflare_api_key
or litellm.api_key
or get_secret("CLOUDFLARE_API_KEY")
)
# api_base = (
# api_base
# or litellm.api_base
# or get_secret("CLOUDFLARE_API_BASE")
# or "https://api.anthropic.com/v1/complete"
# )
custom_prompt_dict = custom_prompt_dict or litellm.custom_prompt_dict
response = cloudflare.completion(
model=model,
messages=messages,
api_base=api_base,
custom_prompt_dict=litellm.custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
encoding=encoding, # for calculating input/output tokens
api_key=api_key,
logging_obj=logging,
)
if "stream" in optional_params and optional_params["stream"] == True:
# don't try to access stream object,
response = CustomStreamWrapper(
response,
model,
custom_llm_provider="anthropic",
logging_obj=logging,
)
if optional_params.get("stream", False) or acompletion == True:
## LOGGING
logging.post_call(
input=messages,
api_key=api_key,
original_response=response,
)
response = response
elif (
custom_llm_provider == "baseten"
or litellm.api_base == "https://app.baseten.co"