forked from phoenix/litellm-mirror
(feat) v0 adding cloudflare
This commit is contained in:
parent
daf32f3bd4
commit
367e9913dc
3 changed files with 234 additions and 0 deletions
|
@ -44,6 +44,7 @@ huggingface_key: Optional[str] = None
|
|||
vertex_project: Optional[str] = None
|
||||
vertex_location: Optional[str] = None
|
||||
togetherai_api_key: Optional[str] = None
|
||||
cloudflare_api_key: Optional[str] = None
|
||||
baseten_key: Optional[str] = None
|
||||
aleph_alpha_key: Optional[str] = None
|
||||
nlp_cloud_key: Optional[str] = None
|
||||
|
@ -390,6 +391,7 @@ provider_list: List = [
|
|||
"mistral",
|
||||
"maritalk",
|
||||
"voyage",
|
||||
"cloudflare",
|
||||
"custom", # custom apis
|
||||
]
|
||||
|
||||
|
@ -491,6 +493,7 @@ from .llms.replicate import ReplicateConfig
|
|||
from .llms.cohere import CohereConfig
|
||||
from .llms.ai21 import AI21Config
|
||||
from .llms.together_ai import TogetherAIConfig
|
||||
from .llms.cloudflare import CloudflareConfig
|
||||
from .llms.palm import PalmConfig
|
||||
from .llms.gemini import GeminiConfig
|
||||
from .llms.nlp_cloud import NLPCloudConfig
|
||||
|
|
185
litellm/llms/cloudflare.py
Normal file
185
litellm/llms/cloudflare.py
Normal file
|
@ -0,0 +1,185 @@
|
|||
import os, types
|
||||
import json
|
||||
from enum import Enum
|
||||
import requests
|
||||
import time
|
||||
from typing import Callable, Optional
|
||||
import litellm
|
||||
import httpx
|
||||
from litellm.utils import ModelResponse, Usage
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
|
||||
|
||||
class CloudflareError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(method="POST", url="https://api.cloudflare.com")
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class CloudflareConfig:
|
||||
max_tokens: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_tokens: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
|
||||
def validate_environment(api_key):
|
||||
if api_key is None:
|
||||
raise ValueError(
|
||||
"Missing CloudflareError API Key - A call is being made to cloudflare but no key is set either in the environment variables or via params"
|
||||
)
|
||||
headers = {
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
"Authorization": "Bearer " + api_key,
|
||||
}
|
||||
return headers
|
||||
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
custom_prompt_dict={},
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
):
|
||||
headers = validate_environment(api_key)
|
||||
|
||||
## Load Config
|
||||
config = litellm.CloudflareConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > togetherai_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
print_verbose(f"CUSTOM PROMPT DICT: {custom_prompt_dict}; model: {model}")
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details.get("roles", {}),
|
||||
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
|
||||
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
||||
bos_token=model_prompt_details.get("bos_token", ""),
|
||||
eos_token=model_prompt_details.get("eos_token", ""),
|
||||
messages=messages,
|
||||
)
|
||||
else:
|
||||
prompt = prompt_factory(
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_key=api_key,
|
||||
custom_llm_provider="together_ai",
|
||||
) # api key required to query together ai model list
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
"request_type": "language-model-inference",
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"headers": headers,
|
||||
"api_base": api_base,
|
||||
},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
if "stream_tokens" in optional_params and optional_params["stream_tokens"] == True:
|
||||
response = requests.post(
|
||||
api_base,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
stream=optional_params["stream_tokens"],
|
||||
)
|
||||
return response.iter_lines()
|
||||
else:
|
||||
response = requests.post(api_base, headers=headers, data=json.dumps(data))
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
original_response=response.text,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response.text}")
|
||||
## RESPONSE OBJECT
|
||||
if response.status_code != 200:
|
||||
raise CloudflareError(
|
||||
status_code=response.status_code, message=response.text
|
||||
)
|
||||
completion_response = response.json()
|
||||
|
||||
if len(completion_response["output"]["choices"][0]["text"]) >= 0:
|
||||
model_response["choices"][0]["message"]["content"] = completion_response[
|
||||
"output"
|
||||
]["choices"][0]["text"]
|
||||
|
||||
## CALCULATING USAGE
|
||||
print_verbose(
|
||||
f"CALCULATING TOGETHERAI TOKEN USAGE. Model Response: {model_response}; model_response['choices'][0]['message'].get('content', ''): {model_response['choices'][0]['message'].get('content', None)}"
|
||||
)
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||
)
|
||||
if "finish_reason" in completion_response["output"]["choices"][0]:
|
||||
model_response.choices[0].finish_reason = completion_response["output"][
|
||||
"choices"
|
||||
][0]["finish_reason"]
|
||||
model_response["created"] = int(time.time())
|
||||
model_response["model"] = "together_ai/" + model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
|
@ -50,6 +50,7 @@ from .llms import (
|
|||
vllm,
|
||||
ollama,
|
||||
ollama_chat,
|
||||
cloudflare,
|
||||
cohere,
|
||||
petals,
|
||||
oobabooga,
|
||||
|
@ -1564,6 +1565,51 @@ def completion(
|
|||
return generator
|
||||
|
||||
response = generator
|
||||
elif custom_llm_provider == "cloudflare":
|
||||
api_key = (
|
||||
api_key
|
||||
or litellm.cloudflare_api_key
|
||||
or litellm.api_key
|
||||
or get_secret("CLOUDFLARE_API_KEY")
|
||||
)
|
||||
# api_base = (
|
||||
# api_base
|
||||
# or litellm.api_base
|
||||
# or get_secret("CLOUDFLARE_API_BASE")
|
||||
# or "https://api.anthropic.com/v1/complete"
|
||||
# )
|
||||
custom_prompt_dict = custom_prompt_dict or litellm.custom_prompt_dict
|
||||
response = cloudflare.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_base=api_base,
|
||||
custom_prompt_dict=litellm.custom_prompt_dict,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding, # for calculating input/output tokens
|
||||
api_key=api_key,
|
||||
logging_obj=logging,
|
||||
)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
# don't try to access stream object,
|
||||
response = CustomStreamWrapper(
|
||||
response,
|
||||
model,
|
||||
custom_llm_provider="anthropic",
|
||||
logging_obj=logging,
|
||||
)
|
||||
|
||||
if optional_params.get("stream", False) or acompletion == True:
|
||||
## LOGGING
|
||||
logging.post_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
original_response=response,
|
||||
)
|
||||
response = response
|
||||
elif (
|
||||
custom_llm_provider == "baseten"
|
||||
or litellm.api_base == "https://app.baseten.co"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue