forked from phoenix/litellm-mirror
with new caching
This commit is contained in:
parent
8f37caef6d
commit
3726270d95
4 changed files with 78 additions and 20 deletions
|
@ -49,7 +49,9 @@ class Cache():
|
|||
self.cache = RedisCache(type, host, port, password)
|
||||
if type == "local":
|
||||
self.cache = InMemoryCache()
|
||||
if "cache" not in litellm.input_callback:
|
||||
litellm.input_callback.append("cache")
|
||||
if "cache" not in litellm.success_callback:
|
||||
litellm.success_callback.append("cache")
|
||||
|
||||
def get_cache_key(self, *args, **kwargs):
|
||||
|
@ -88,8 +90,9 @@ class Cache():
|
|||
|
||||
def add_cache(self, result, *args, **kwargs):
|
||||
try:
|
||||
# print("adding to cache", result)
|
||||
|
||||
cache_key = self.get_cache_key(*args, **kwargs)
|
||||
# print("adding to cache", cache_key, result)
|
||||
# print(cache_key)
|
||||
if cache_key is not None:
|
||||
# print("adding to cache", cache_key, result)
|
||||
|
|
|
@ -127,7 +127,7 @@ embedding_large_text = """
|
|||
small text
|
||||
""" * 5
|
||||
|
||||
# test_caching_with_models()
|
||||
# # test_caching_with_models()
|
||||
def test_embedding_caching():
|
||||
import time
|
||||
litellm.cache = Cache()
|
||||
|
@ -153,18 +153,64 @@ def test_embedding_caching():
|
|||
|
||||
|
||||
# test caching with streaming
|
||||
messages = [{"role": "user", "content": "tell me a story in 2 sentences"}]
|
||||
def test_caching_v2_stream():
|
||||
|
||||
def test_caching_v2_stream_basic():
|
||||
try:
|
||||
litellm.cache = Cache()
|
||||
# litellm.token="ishaan@berri.ai"
|
||||
messages = [{"role": "user", "content": "tell me a story in 2 sentences"}]
|
||||
response1 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
||||
|
||||
result_string = ""
|
||||
for chunk in response1:
|
||||
print(chunk)
|
||||
result_string+=chunk['choices'][0]['delta']['content']
|
||||
# response1_id = chunk['id']
|
||||
|
||||
print("current cache")
|
||||
print(litellm.cache.cache.cache_dict)
|
||||
|
||||
result2_string=""
|
||||
import time
|
||||
time.sleep(1)
|
||||
response2 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
||||
for chunk in response2:
|
||||
print(chunk)
|
||||
result2_string+=chunk['choices'][0]['delta']['content']
|
||||
if result_string != result2_string:
|
||||
print(result_string)
|
||||
print(result2_string)
|
||||
pytest.fail(f"Error occurred: Caching with streaming failed, strings diff")
|
||||
litellm.cache = None
|
||||
|
||||
except Exception as e:
|
||||
print(f"error occurred: {traceback.format_exc()}")
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# test_caching_v2_stream_basic()
|
||||
|
||||
def test_caching_v2_stream():
|
||||
try:
|
||||
litellm.cache = Cache()
|
||||
# litellm.token="ishaan@berri.ai"
|
||||
messages = [{"role": "user", "content": "tell me a story in 2 sentences"}]
|
||||
response1 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
||||
|
||||
messages = [{"role": "user", "content": "tell me a chair"}]
|
||||
response7 = completion(model="command-nightly", messages=messages)
|
||||
messages = [{"role": "user", "content": "sing a song"}]
|
||||
response8 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
||||
|
||||
result_string = ""
|
||||
for chunk in response1:
|
||||
print(chunk)
|
||||
result_string+=chunk['choices'][0]['delta']['content']
|
||||
# response1_id = chunk['id']
|
||||
|
||||
print("current cache")
|
||||
messages = [{"role": "user", "content": "tell me a story in 2 sentences"}]
|
||||
print(litellm.cache.cache.cache_dict)
|
||||
|
||||
result2_string=""
|
||||
response2 = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
||||
for chunk in response2:
|
||||
|
@ -174,6 +220,7 @@ def test_caching_v2_stream():
|
|||
print(result_string)
|
||||
print(result2_string)
|
||||
pytest.fail(f"Error occurred: Caching with streaming failed, strings diff")
|
||||
litellm.cache = None
|
||||
|
||||
except Exception as e:
|
||||
print(f"error occurred: {traceback.format_exc()}")
|
||||
|
|
|
@ -87,7 +87,7 @@ class Choices(OpenAIObject):
|
|||
class ModelResponse(OpenAIObject):
|
||||
def __init__(self, choices=None, created=None, model=None, usage=None, **params):
|
||||
super(ModelResponse, self).__init__(**params)
|
||||
self.choices = choices if choices else [Choices()]
|
||||
self.choices = self.choices = choices if choices else [Choices(message=Message())]
|
||||
self.created = created
|
||||
self.model = model
|
||||
self.usage = (
|
||||
|
@ -287,17 +287,26 @@ class Logging:
|
|||
)
|
||||
if callback == "cache":
|
||||
try:
|
||||
# print("entering logger first time")
|
||||
# print(self.litellm_params["stream_response"])
|
||||
if litellm.cache != None and self.model_call_details.get('optional_params', {}).get('stream', False) == True:
|
||||
if self.litellm_params["stream_response"] == None:
|
||||
self.litellm_params["stream_response"] = ModelResponse()
|
||||
litellm_call_id = self.litellm_params["litellm_call_id"]
|
||||
if litellm_call_id in self.litellm_params["stream_response"]:
|
||||
# append for the given call_id
|
||||
if self.litellm_params["stream_response"][litellm_call_id]["choices"][0]["message"]["content"] == "default":
|
||||
self.litellm_params["stream_response"][litellm_call_id]["choices"][0]["message"]["content"] = original_response # handle first try
|
||||
else:
|
||||
#self.litellm_call_id["stream_response"]["id"] = self.litellm_params["litellm_call_id"]
|
||||
if self.litellm_params["stream_response"]["choices"][0]["message"]["content"] == "default":
|
||||
self.litellm_params["stream_response"]["choices"][0]["message"]["content"] = original_response # handle first try
|
||||
else:
|
||||
self.litellm_params["stream_response"]["choices"][0]["message"]["content"] += original_response
|
||||
litellm.cache.add_cache(self.litellm_params["stream_response"], **self.model_call_details)
|
||||
self.litellm_params["stream_response"][litellm_call_id]["choices"][0]["message"]["content"] += original_response
|
||||
else: # init a streaming response for this call id
|
||||
new_model_response = ModelResponse(choices=[Choices(message=Message(content="default"))])
|
||||
#print("creating new model response")
|
||||
#print(new_model_response)
|
||||
self.litellm_params["stream_response"][litellm_call_id] = new_model_response
|
||||
#print("adding to cache for", litellm_call_id)
|
||||
litellm.cache.add_cache(self.litellm_params["stream_response"][litellm_call_id], **self.model_call_details)
|
||||
except Exception as e:
|
||||
# print("got exception")
|
||||
# print(e)
|
||||
pass
|
||||
except:
|
||||
print_verbose(
|
||||
|
@ -466,7 +475,6 @@ def client(original_function):
|
|||
# CRASH REPORTING TELEMETRY
|
||||
crash_reporting(*args, **kwargs)
|
||||
# INIT LOGGER - for user-specified integrations
|
||||
print(f"len args: {len(args)}")
|
||||
model = args[0] if len(args) > 0 else kwargs["model"]
|
||||
call_type = original_function.__name__
|
||||
if call_type == CallTypes.completion.value:
|
||||
|
@ -638,7 +646,7 @@ def get_litellm_params(
|
|||
"custom_api_base": custom_api_base,
|
||||
"litellm_call_id": litellm_call_id,
|
||||
"model_alias_map": model_alias_map,
|
||||
"stream_response": None
|
||||
"stream_response": {} # litellm_call_id: ModelResponse Dict
|
||||
}
|
||||
|
||||
return litellm_params
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "litellm"
|
||||
version = "0.1.497"
|
||||
version = "0.1.498"
|
||||
description = "Library to easily interface with LLM API providers"
|
||||
authors = ["BerriAI"]
|
||||
license = "MIT License"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue