forked from phoenix/litellm-mirror
clean out AI21 Init Client calls
This commit is contained in:
parent
f2b0fa90ab
commit
38564ddc82
2 changed files with 94 additions and 107 deletions
|
@ -1,4 +1,5 @@
|
||||||
import os, json
|
import os
|
||||||
|
import json
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
import requests
|
import requests
|
||||||
import time
|
import time
|
||||||
|
@ -13,115 +14,102 @@ class AI21Error(Exception):
|
||||||
self.message
|
self.message
|
||||||
) # Call the base class constructor with the parameters it needs
|
) # Call the base class constructor with the parameters it needs
|
||||||
|
|
||||||
|
def validate_environment(api_key):
|
||||||
|
if api_key is None:
|
||||||
|
raise ValueError(
|
||||||
|
"Missing AI21 API Key - A call is being made to ai21 but no key is set either in the environment variables or via params"
|
||||||
|
)
|
||||||
|
headers = {
|
||||||
|
"accept": "application/json",
|
||||||
|
"content-type": "application/json",
|
||||||
|
"Authorization": "Bearer " + api_key,
|
||||||
|
}
|
||||||
|
return headers
|
||||||
|
|
||||||
class AI21LLM:
|
def completion(
|
||||||
def __init__(
|
model: str,
|
||||||
self, encoding, logging_obj, api_key=None
|
messages: list,
|
||||||
):
|
model_response: ModelResponse,
|
||||||
self.encoding = encoding
|
print_verbose: Callable,
|
||||||
self.completion_url_fragment_1 = "https://api.ai21.com/studio/v1/"
|
encoding,
|
||||||
self.completion_url_fragment_2 = "/complete"
|
api_key,
|
||||||
self.api_key = api_key
|
logging_obj,
|
||||||
self.logging_obj = logging_obj
|
optional_params=None,
|
||||||
self.validate_environment(api_key=api_key)
|
litellm_params=None,
|
||||||
|
logger_fn=None,
|
||||||
def validate_environment(
|
):
|
||||||
self, api_key
|
headers = validate_environment(api_key)
|
||||||
): # set up the environment required to run the model
|
model = model
|
||||||
# set the api key
|
prompt = ""
|
||||||
if self.api_key == None:
|
for message in messages:
|
||||||
raise ValueError(
|
if "role" in message:
|
||||||
"Missing AI21 API Key - A call is being made to ai21 but no key is set either in the environment variables or via params"
|
if message["role"] == "user":
|
||||||
)
|
prompt += (
|
||||||
self.api_key = api_key
|
f"{message['content']}"
|
||||||
self.headers = {
|
)
|
||||||
"accept": "application/json",
|
|
||||||
"content-type": "application/json",
|
|
||||||
"Authorization": "Bearer " + self.api_key,
|
|
||||||
}
|
|
||||||
|
|
||||||
def completion(
|
|
||||||
self,
|
|
||||||
model: str,
|
|
||||||
messages: list,
|
|
||||||
model_response: ModelResponse,
|
|
||||||
print_verbose: Callable,
|
|
||||||
optional_params=None,
|
|
||||||
litellm_params=None,
|
|
||||||
logger_fn=None,
|
|
||||||
): # logic for parsing in - calling - parsing out model completion calls
|
|
||||||
model = model
|
|
||||||
prompt = ""
|
|
||||||
for message in messages:
|
|
||||||
if "role" in message:
|
|
||||||
if message["role"] == "user":
|
|
||||||
prompt += (
|
|
||||||
f"{message['content']}"
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
prompt += (
|
|
||||||
f"{message['content']}"
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
prompt += f"{message['content']}"
|
prompt += (
|
||||||
data = {
|
f"{message['content']}"
|
||||||
"prompt": prompt,
|
)
|
||||||
# "instruction": prompt, # some baseten models require the prompt to be passed in via the 'instruction' kwarg
|
else:
|
||||||
**optional_params,
|
prompt += f"{message['content']}"
|
||||||
}
|
data = {
|
||||||
|
"prompt": prompt,
|
||||||
|
# "instruction": prompt, # some baseten models require the prompt to be passed in via the 'instruction' kwarg
|
||||||
|
**optional_params,
|
||||||
|
}
|
||||||
|
|
||||||
## LOGGING
|
## LOGGING
|
||||||
self.logging_obj.pre_call(
|
logging_obj.pre_call(
|
||||||
input=prompt,
|
input=prompt,
|
||||||
api_key=self.api_key,
|
api_key=api_key,
|
||||||
additional_args={"complete_input_dict": data},
|
additional_args={"complete_input_dict": data},
|
||||||
)
|
)
|
||||||
## COMPLETION CALL
|
## COMPLETION CALL
|
||||||
response = requests.post(
|
response = requests.post(
|
||||||
self.completion_url_fragment_1 + model + self.completion_url_fragment_2, headers=self.headers, data=json.dumps(data)
|
"https://api.ai21.com/studio/v1/" + model + "/complete", headers=headers, data=json.dumps(data)
|
||||||
)
|
)
|
||||||
if "stream" in optional_params and optional_params["stream"] == True:
|
if "stream" in optional_params and optional_params["stream"] == True:
|
||||||
return response.iter_lines()
|
return response.iter_lines()
|
||||||
else:
|
else:
|
||||||
## LOGGING
|
## LOGGING
|
||||||
self.logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
input=prompt,
|
input=prompt,
|
||||||
api_key=self.api_key,
|
api_key=api_key,
|
||||||
original_response=response.text,
|
original_response=response.text,
|
||||||
additional_args={"complete_input_dict": data},
|
additional_args={"complete_input_dict": data},
|
||||||
)
|
)
|
||||||
print_verbose(f"raw model_response: {response.text}")
|
print_verbose(f"raw model_response: {response.text}")
|
||||||
## RESPONSE OBJECT
|
## RESPONSE OBJECT
|
||||||
completion_response = response.json()
|
completion_response = response.json()
|
||||||
if "error" in completion_response:
|
if "error" in completion_response:
|
||||||
raise AI21Error(
|
raise AI21Error(
|
||||||
message=completion_response["error"],
|
message=completion_response["error"],
|
||||||
status_code=response.status_code,
|
status_code=response.status_code,
|
||||||
)
|
|
||||||
else:
|
|
||||||
try:
|
|
||||||
model_response["choices"][0]["message"]["content"] = completion_response["completions"][0]["data"]["text"]
|
|
||||||
except:
|
|
||||||
raise AI21Error(message=json.dumps(completion_response), status_code=response.status_code)
|
|
||||||
|
|
||||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
|
||||||
prompt_tokens = len(
|
|
||||||
self.encoding.encode(prompt)
|
|
||||||
)
|
|
||||||
completion_tokens = len(
|
|
||||||
self.encoding.encode(model_response["choices"][0]["message"]["content"])
|
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
model_response["choices"][0]["message"]["content"] = completion_response["completions"][0]["data"]["text"]
|
||||||
|
except:
|
||||||
|
raise AI21Error(message=json.dumps(completion_response), status_code=response.status_code)
|
||||||
|
|
||||||
model_response["created"] = time.time()
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||||
model_response["model"] = model
|
prompt_tokens = len(
|
||||||
model_response["usage"] = {
|
encoding.encode(prompt)
|
||||||
"prompt_tokens": prompt_tokens,
|
)
|
||||||
"completion_tokens": completion_tokens,
|
completion_tokens = len(
|
||||||
"total_tokens": prompt_tokens + completion_tokens,
|
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||||
}
|
)
|
||||||
return model_response
|
|
||||||
|
|
||||||
def embedding(
|
model_response["created"] = time.time()
|
||||||
self,
|
model_response["model"] = model
|
||||||
): # logic for parsing in - calling - parsing out model embedding calls
|
model_response["usage"] = {
|
||||||
pass
|
"prompt_tokens": prompt_tokens,
|
||||||
|
"completion_tokens": completion_tokens,
|
||||||
|
"total_tokens": prompt_tokens + completion_tokens,
|
||||||
|
}
|
||||||
|
return model_response
|
||||||
|
|
||||||
|
def embedding():
|
||||||
|
# logic for parsing in - calling - parsing out model embedding calls
|
||||||
|
pass
|
||||||
|
|
|
@ -21,9 +21,9 @@ from litellm.utils import (
|
||||||
)
|
)
|
||||||
from .llms import anthropic
|
from .llms import anthropic
|
||||||
from .llms import together_ai
|
from .llms import together_ai
|
||||||
|
from .llms import ai21
|
||||||
from .llms.huggingface_restapi import HuggingfaceRestAPILLM
|
from .llms.huggingface_restapi import HuggingfaceRestAPILLM
|
||||||
from .llms.baseten import BasetenLLM
|
from .llms.baseten import BasetenLLM
|
||||||
from .llms.ai21 import AI21LLM
|
|
||||||
from .llms.aleph_alpha import AlephAlphaLLM
|
from .llms.aleph_alpha import AlephAlphaLLM
|
||||||
import tiktoken
|
import tiktoken
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
@ -657,12 +657,8 @@ def completion(
|
||||||
api_key
|
api_key
|
||||||
or litellm.ai21_key
|
or litellm.ai21_key
|
||||||
or os.environ.get("AI21_API_KEY")
|
or os.environ.get("AI21_API_KEY")
|
||||||
)
|
)
|
||||||
ai21_client = AI21LLM(
|
model_response = ai21.completion(
|
||||||
encoding=encoding, api_key=ai21_key, logging_obj=logging
|
|
||||||
)
|
|
||||||
|
|
||||||
model_response = ai21_client.completion(
|
|
||||||
model=model,
|
model=model,
|
||||||
messages=messages,
|
messages=messages,
|
||||||
model_response=model_response,
|
model_response=model_response,
|
||||||
|
@ -670,6 +666,9 @@ def completion(
|
||||||
optional_params=optional_params,
|
optional_params=optional_params,
|
||||||
litellm_params=litellm_params,
|
litellm_params=litellm_params,
|
||||||
logger_fn=logger_fn,
|
logger_fn=logger_fn,
|
||||||
|
encoding=encoding,
|
||||||
|
api_key=ai21_key,
|
||||||
|
logging_obj=logging
|
||||||
)
|
)
|
||||||
|
|
||||||
if "stream" in optional_params and optional_params["stream"] == True:
|
if "stream" in optional_params and optional_params["stream"] == True:
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue