clean out AI21 Init Client calls

This commit is contained in:
ishaan-jaff 2023-09-04 10:08:53 -07:00
parent f2b0fa90ab
commit 38564ddc82
2 changed files with 94 additions and 107 deletions

View file

@ -1,4 +1,5 @@
import os, json
import os
import json
from enum import Enum
import requests
import time
@ -13,115 +14,102 @@ class AI21Error(Exception):
self.message
) # Call the base class constructor with the parameters it needs
def validate_environment(api_key):
if api_key is None:
raise ValueError(
"Missing AI21 API Key - A call is being made to ai21 but no key is set either in the environment variables or via params"
)
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": "Bearer " + api_key,
}
return headers
class AI21LLM:
def __init__(
self, encoding, logging_obj, api_key=None
):
self.encoding = encoding
self.completion_url_fragment_1 = "https://api.ai21.com/studio/v1/"
self.completion_url_fragment_2 = "/complete"
self.api_key = api_key
self.logging_obj = logging_obj
self.validate_environment(api_key=api_key)
def validate_environment(
self, api_key
): # set up the environment required to run the model
# set the api key
if self.api_key == None:
raise ValueError(
"Missing AI21 API Key - A call is being made to ai21 but no key is set either in the environment variables or via params"
)
self.api_key = api_key
self.headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": "Bearer " + self.api_key,
}
def completion(
self,
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
optional_params=None,
litellm_params=None,
logger_fn=None,
): # logic for parsing in - calling - parsing out model completion calls
model = model
prompt = ""
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += (
f"{message['content']}"
)
else:
prompt += (
f"{message['content']}"
)
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
):
headers = validate_environment(api_key)
model = model
prompt = ""
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += (
f"{message['content']}"
)
else:
prompt += f"{message['content']}"
data = {
"prompt": prompt,
# "instruction": prompt, # some baseten models require the prompt to be passed in via the 'instruction' kwarg
**optional_params,
}
prompt += (
f"{message['content']}"
)
else:
prompt += f"{message['content']}"
data = {
"prompt": prompt,
# "instruction": prompt, # some baseten models require the prompt to be passed in via the 'instruction' kwarg
**optional_params,
}
## LOGGING
self.logging_obj.pre_call(
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=self.api_key,
api_key=api_key,
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
response = requests.post(
self.completion_url_fragment_1 + model + self.completion_url_fragment_2, headers=self.headers, data=json.dumps(data)
)
if "stream" in optional_params and optional_params["stream"] == True:
return response.iter_lines()
else:
## LOGGING
self.logging_obj.post_call(
## COMPLETION CALL
response = requests.post(
"https://api.ai21.com/studio/v1/" + model + "/complete", headers=headers, data=json.dumps(data)
)
if "stream" in optional_params and optional_params["stream"] == True:
return response.iter_lines()
else:
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=self.api_key,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
completion_response = response.json()
if "error" in completion_response:
raise AI21Error(
message=completion_response["error"],
status_code=response.status_code,
)
else:
try:
model_response["choices"][0]["message"]["content"] = completion_response["completions"][0]["data"]["text"]
except:
raise AI21Error(message=json.dumps(completion_response), status_code=response.status_code)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(
self.encoding.encode(prompt)
)
completion_tokens = len(
self.encoding.encode(model_response["choices"][0]["message"]["content"])
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
completion_response = response.json()
if "error" in completion_response:
raise AI21Error(
message=completion_response["error"],
status_code=response.status_code,
)
else:
try:
model_response["choices"][0]["message"]["content"] = completion_response["completions"][0]["data"]["text"]
except:
raise AI21Error(message=json.dumps(completion_response), status_code=response.status_code)
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(
encoding.encode(prompt)
)
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"]["content"])
)
def embedding(
self,
): # logic for parsing in - calling - parsing out model embedding calls
pass
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass

View file

@ -21,9 +21,9 @@ from litellm.utils import (
)
from .llms import anthropic
from .llms import together_ai
from .llms import ai21
from .llms.huggingface_restapi import HuggingfaceRestAPILLM
from .llms.baseten import BasetenLLM
from .llms.ai21 import AI21LLM
from .llms.aleph_alpha import AlephAlphaLLM
import tiktoken
from concurrent.futures import ThreadPoolExecutor
@ -657,12 +657,8 @@ def completion(
api_key
or litellm.ai21_key
or os.environ.get("AI21_API_KEY")
)
ai21_client = AI21LLM(
encoding=encoding, api_key=ai21_key, logging_obj=logging
)
model_response = ai21_client.completion(
)
model_response = ai21.completion(
model=model,
messages=messages,
model_response=model_response,
@ -670,6 +666,9 @@ def completion(
optional_params=optional_params,
litellm_params=litellm_params,
logger_fn=logger_fn,
encoding=encoding,
api_key=ai21_key,
logging_obj=logging
)
if "stream" in optional_params and optional_params["stream"] == True: