forked from phoenix/litellm-mirror
feat(proxy_cli.py): optional logging
This commit is contained in:
parent
2e5db47ad0
commit
3863920ea5
2 changed files with 5 additions and 20 deletions
|
@ -100,6 +100,7 @@ user_temperature = None
|
||||||
user_telemetry = True
|
user_telemetry = True
|
||||||
user_config = None
|
user_config = None
|
||||||
user_headers = None
|
user_headers = None
|
||||||
|
local_logging = True # writes logs to a local api_log.json file for debugging
|
||||||
config_filename = "litellm.secrets.toml"
|
config_filename = "litellm.secrets.toml"
|
||||||
config_dir = os.getcwd()
|
config_dir = os.getcwd()
|
||||||
config_dir = appdirs.user_config_dir("litellm")
|
config_dir = appdirs.user_config_dir("litellm")
|
||||||
|
@ -183,7 +184,7 @@ def save_params_to_config(data: dict):
|
||||||
|
|
||||||
def load_config():
|
def load_config():
|
||||||
try:
|
try:
|
||||||
global user_config, user_api_base, user_max_tokens, user_temperature, user_model
|
global user_config, user_api_base, user_max_tokens, user_temperature, user_model, local_logging
|
||||||
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
|
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
|
||||||
with open(user_config_path, "rb") as f:
|
with open(user_config_path, "rb") as f:
|
||||||
user_config = tomllib.load(f)
|
user_config = tomllib.load(f)
|
||||||
|
@ -202,6 +203,8 @@ def load_config():
|
||||||
None) # fallback models in case initial completion call fails
|
None) # fallback models in case initial completion call fails
|
||||||
default_model = user_config["general"].get("default_model", None) # route all requests to this model.
|
default_model = user_config["general"].get("default_model", None) # route all requests to this model.
|
||||||
|
|
||||||
|
local_logging = user_config["general"].get("local_logging", True)
|
||||||
|
|
||||||
if user_model is None: # `litellm --model <model-name>`` > default_model.
|
if user_model is None: # `litellm --model <model-name>`` > default_model.
|
||||||
user_model = default_model
|
user_model = default_model
|
||||||
|
|
||||||
|
@ -388,25 +391,6 @@ def logger(
|
||||||
|
|
||||||
thread = threading.Thread(target=write_to_log, daemon=True)
|
thread = threading.Thread(target=write_to_log, daemon=True)
|
||||||
thread.start()
|
thread.start()
|
||||||
## Commenting out post-api call logging as it would break json writes on cli error
|
|
||||||
# elif log_event_type == 'post_api_call':
|
|
||||||
# if "stream" not in kwargs["optional_params"] or kwargs["optional_params"]["stream"] is False or kwargs.get(
|
|
||||||
# "complete_streaming_response", False):
|
|
||||||
# inference_params = copy.deepcopy(kwargs)
|
|
||||||
# timestamp = inference_params.pop('start_time')
|
|
||||||
# dt_key = timestamp.strftime("%Y%m%d%H%M%S%f")[:23]
|
|
||||||
|
|
||||||
# with open(log_file, 'r') as f:
|
|
||||||
# existing_data = json.load(f)
|
|
||||||
|
|
||||||
# existing_data[dt_key]['post_api_call'] = inference_params
|
|
||||||
|
|
||||||
# def write_to_log():
|
|
||||||
# with open(log_file, 'w') as f:
|
|
||||||
# json.dump(existing_data, f, indent=2)
|
|
||||||
|
|
||||||
# thread = threading.Thread(target=write_to_log, daemon=True)
|
|
||||||
# thread.start()
|
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
|
@ -12,6 +12,7 @@
|
||||||
# add_function_to_prompt = true # e.g: Ollama doesn't support functions, so add it to the prompt instead
|
# add_function_to_prompt = true # e.g: Ollama doesn't support functions, so add it to the prompt instead
|
||||||
# drop_params = true # drop any params not supported by the provider (e.g. Ollama)
|
# drop_params = true # drop any params not supported by the provider (e.g. Ollama)
|
||||||
# default_model = None # route all requests to this model
|
# default_model = None # route all requests to this model
|
||||||
|
# local_logging = true # writes logs to a local 'api_log.json' file for debugging
|
||||||
# fallbacks = ["gpt-3.5-turbo", "gpt-4"] # models you want to fallback to in case completion call fails (remember: add relevant keys)
|
# fallbacks = ["gpt-3.5-turbo", "gpt-4"] # models you want to fallback to in case completion call fails (remember: add relevant keys)
|
||||||
|
|
||||||
[model."ollama/llama2"] # run via `litellm --model ollama/llama2`
|
[model."ollama/llama2"] # run via `litellm --model ollama/llama2`
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue