feat: add logfire integration

This commit is contained in:
alisalim17 2024-05-04 16:22:53 +04:00
parent 91971fa9e0
commit 39099e9c5b
3 changed files with 190 additions and 14 deletions

View file

@ -41,6 +41,7 @@ jobs:
pip install langchain
pip install lunary==0.2.5
pip install "langfuse==2.27.1"
pip install "logfire==0.29.0"
pip install numpydoc
pip install traceloop-sdk==0.0.69
pip install openai
@ -87,7 +88,6 @@ jobs:
fi
cd ..
# Run pytest and generate JUnit XML report
- run:
name: Run tests
@ -170,6 +170,7 @@ jobs:
pip install "aioboto3==12.3.0"
pip install langchain
pip install "langfuse>=2.0.0"
pip install "logfire==0.29.0"
pip install numpydoc
pip install prisma
pip install fastapi

View file

@ -0,0 +1,145 @@
#### What this does ####
# On success + failure, log events to Logfire
import dotenv, os
dotenv.load_dotenv() # Loading env variables using dotenv
import traceback
import uuid
from litellm._logging import print_verbose, verbose_logger
from typing import Any, Dict, NamedTuple
from typing_extensions import LiteralString
class SpanConfig(NamedTuple):
message_template: LiteralString
span_data: Dict[str, Any]
class LogfireLogger:
# Class variables or attributes
def __init__(self):
try:
verbose_logger.debug(f"in init logfire logger")
import logfire
# only setting up logfire if we are sending to logfire
# in testing, we don't want to send to logfire
if logfire.DEFAULT_LOGFIRE_INSTANCE.config.send_to_logfire:
logfire.configure(token=os.getenv("LOGFIRE_TOKEN"))
except Exception as e:
print_verbose(f"Got exception on init logfire client {str(e)}")
raise e
def _get_span_config(self, payload) -> SpanConfig:
if (
payload["call_type"] == "completion"
or payload["call_type"] == "acompletion"
):
return SpanConfig(
message_template="Chat Completion with {request_data[model]!r}",
span_data={"request_data": payload},
)
elif (
payload["call_type"] == "embedding" or payload["call_type"] == "aembedding"
):
return SpanConfig(
message_template="Embedding Creation with {request_data[model]!r}",
span_data={"request_data": payload},
)
elif (
payload["call_type"] == "image_generation"
or payload["call_type"] == "aimage_generation"
):
return SpanConfig(
message_template="Image Generation with {request_data[model]!r}",
span_data={"request_data": payload},
)
else:
return SpanConfig(
message_template="Litellm Call with {request_data[model]!r}",
span_data={"request_data": payload},
)
async def _async_log_event(
self, kwargs, response_obj, start_time, end_time, print_verbose, user_id
):
self.log_event(kwargs, response_obj, start_time, end_time, print_verbose)
def log_event(
self, kwargs, response_obj, start_time, end_time, user_id, print_verbose
):
try:
import logfire
verbose_logger.debug(
f"logfire Logging - Enters logging function for model {kwargs}"
)
litellm_params = kwargs.get("litellm_params", {})
metadata = (
litellm_params.get("metadata", {}) or {}
) # if litellm_params['metadata'] == None
messages = kwargs.get("messages")
optional_params = kwargs.get("optional_params", {})
call_type = kwargs.get("call_type", "completion")
cache_hit = kwargs.get("cache_hit", False)
usage = response_obj.get("usage", {})
id = response_obj.get("id", str(uuid.uuid4()))
try:
response_time = (end_time - start_time).total_seconds()
except:
response_time = None
# Clean Metadata before logging - never log raw metadata
# the raw metadata can contain circular references which leads to infinite recursion
# we clean out all extra litellm metadata params before logging
clean_metadata = {}
if isinstance(metadata, dict):
for key, value in metadata.items():
# clean litellm metadata before logging
if key in [
"endpoint",
"caching_groups",
"previous_models",
]:
continue
else:
clean_metadata[key] = value
# Build the initial payload
payload = {
"id": id,
"call_type": call_type,
"cache_hit": cache_hit,
"startTime": start_time,
"endTime": end_time,
"responseTime (seconds)": response_time,
"model": kwargs.get("model", ""),
"user": kwargs.get("user", ""),
"modelParameters": optional_params,
"spend": kwargs.get("response_cost", 0),
"messages": messages,
"response": response_obj,
"usage": usage,
"metadata": clean_metadata,
}
logfire_openai = logfire.with_settings(custom_scope_suffix="openai")
message_template, span_data = self._get_span_config(payload)
with logfire_openai.span(
message_template,
**span_data,
):
pass
print_verbose(f"\ndd Logger - Logging payload = {payload}")
print_verbose(
f"Logfire Layer Logging - final response object: {response_obj}"
)
except Exception as e:
traceback.print_exc()
verbose_logger.debug(
f"Logfire Layer Error - {str(e)}\n{traceback.format_exc()}"
)
pass

View file

@ -6,7 +6,6 @@
# +-----------------------------------------------+
#
# Thank you users! We ❤️ you! - Krrish & Ishaan
import sys, re, binascii, struct
import litellm
import dotenv, json, traceback, threading, base64, ast
@ -67,6 +66,7 @@ from .integrations.supabase import Supabase
from .integrations.lunary import LunaryLogger
from .integrations.prompt_layer import PromptLayerLogger
from .integrations.langsmith import LangsmithLogger
from .integrations.logfire_logger import LogfireLogger
from .integrations.weights_biases import WeightsBiasesLogger
from .integrations.custom_logger import CustomLogger
from .integrations.langfuse import LangFuseLogger
@ -128,6 +128,7 @@ heliconeLogger = None
athinaLogger = None
promptLayerLogger = None
langsmithLogger = None
logfireLogger = None
weightsBiasesLogger = None
customLogger = None
langFuseLogger = None
@ -1059,7 +1060,7 @@ class CallTypes(Enum):
# Logging function -> log the exact model details + what's being sent | Non-BlockingP
class Logging:
global supabaseClient, liteDebuggerClient, promptLayerLogger, weightsBiasesLogger, langsmithLogger, capture_exception, add_breadcrumb, lunaryLogger
global supabaseClient, liteDebuggerClient, promptLayerLogger, weightsBiasesLogger, langsmithLogger, logfireLogger, capture_exception, add_breadcrumb, lunaryLogger
def __init__(
self,
@ -1628,6 +1629,33 @@ class Logging:
end_time=end_time,
print_verbose=print_verbose,
)
if callback == "logfire":
global logfireLogger
verbose_logger.debug("reaches logfire for success logging!")
kwargs = {}
for k, v in self.model_call_details.items():
if (
k != "original_response"
): # copy.deepcopy raises errors as this could be a coroutine
kwargs[k] = v
# this only logs streaming once, complete_streaming_response exists i.e when stream ends
if self.stream:
if "complete_streaming_response" not in kwargs:
break
else:
print_verbose("reaches logfire for streaming logging!")
result = kwargs["complete_streaming_response"]
logfireLogger.log_event(
kwargs=self.model_call_details,
response_obj=result,
start_time=start_time,
end_time=end_time,
print_verbose=print_verbose,
user_id=kwargs.get("user", None),
)
if callback == "lunary":
print_verbose("reaches lunary for logging!")
model = self.model
@ -3977,9 +4005,7 @@ def calculage_img_tokens(
def create_pretrained_tokenizer(
identifier: str,
revision="main",
auth_token: Optional[str] = None
identifier: str, revision="main", auth_token: Optional[str] = None
):
"""
Creates a tokenizer from an existing file on a HuggingFace repository to be used with `token_counter`.
@ -3993,7 +4019,9 @@ def create_pretrained_tokenizer(
dict: A dictionary with the tokenizer and its type.
"""
tokenizer = Tokenizer.from_pretrained(identifier, revision=revision, auth_token=auth_token)
tokenizer = Tokenizer.from_pretrained(
identifier, revision=revision, auth_token=auth_token
)
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
@ -6973,7 +7001,7 @@ def validate_environment(model: Optional[str] = None) -> dict:
def set_callbacks(callback_list, function_id=None):
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, traceloopLogger, athinaLogger, heliconeLogger, aispendLogger, berrispendLogger, supabaseClient, liteDebuggerClient, lunaryLogger, promptLayerLogger, langFuseLogger, customLogger, weightsBiasesLogger, langsmithLogger, dynamoLogger, s3Logger, dataDogLogger, prometheusLogger, greenscaleLogger, openMeterLogger
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, traceloopLogger, athinaLogger, heliconeLogger, aispendLogger, berrispendLogger, supabaseClient, liteDebuggerClient, lunaryLogger, promptLayerLogger, langFuseLogger, customLogger, weightsBiasesLogger, langsmithLogger, logfireLogger, dynamoLogger, s3Logger, dataDogLogger, prometheusLogger, greenscaleLogger, openMeterLogger
try:
for callback in callback_list:
@ -7055,6 +7083,8 @@ def set_callbacks(callback_list, function_id=None):
weightsBiasesLogger = WeightsBiasesLogger()
elif callback == "langsmith":
langsmithLogger = LangsmithLogger()
elif callback == "logfire":
logfireLogger = LogfireLogger()
elif callback == "aispend":
aispendLogger = AISpendLogger()
elif callback == "berrispend":