Litellm dev 10 14 2024 (#6221)

* fix(__init__.py): expose DualCache, RedisCache, InMemoryCache on root

abstract internal file refactors from impacting users

* feat(utils.py): handle invalid openai parallel tool calling response

Fixes https://community.openai.com/t/model-tries-to-call-unknown-function-multi-tool-use-parallel/490653

* docs(bedrock.md): clarify all bedrock models are supported

Closes https://github.com/BerriAI/litellm/issues/6168#issuecomment-2412082236
This commit is contained in:
Krish Dholakia 2024-10-14 22:11:14 -07:00 committed by GitHub
parent cda0a993e2
commit 39486e2003
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 240 additions and 5 deletions

View file

@ -4567,3 +4567,176 @@ def test_completion_response_ratelimit_headers(model, stream):
assert v != "None" and v is not None
assert "x-ratelimit-remaining-requests" in additional_headers
assert "x-ratelimit-remaining-tokens" in additional_headers
def _openai_hallucinated_tool_call_mock_response(
*args, **kwargs
) -> litellm.ModelResponse:
new_response = MagicMock()
new_response.headers = {"hello": "world"}
response_object = {
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": "gpt-3.5-turbo-0125",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{
"index": 0,
"message": {
"content": None,
"role": "assistant",
"tool_calls": [
{
"function": {
"arguments": '{"tool_uses":[{"recipient_name":"product_title","parameters":{"content":"Story Scribe"}},{"recipient_name":"one_liner","parameters":{"content":"Transform interview transcripts into actionable user stories"}}]}',
"name": "multi_tool_use.parallel",
},
"id": "call_IzGXwVa5OfBd9XcCJOkt2q0s",
"type": "function",
}
],
},
"logprobs": None,
"finish_reason": "stop",
}
],
"usage": {"prompt_tokens": 9, "completion_tokens": 12, "total_tokens": 21},
}
from openai import OpenAI
from openai.types.chat.chat_completion import ChatCompletion
pydantic_obj = ChatCompletion(**response_object) # type: ignore
pydantic_obj.choices[0].message.role = None # type: ignore
new_response.parse.return_value = pydantic_obj
return new_response
def test_openai_hallucinated_tool_call():
"""
Patch for this issue: https://community.openai.com/t/model-tries-to-call-unknown-function-multi-tool-use-parallel/490653
Handle openai invalid tool calling response.
OpenAI assistant will sometimes return an invalid tool calling response, which needs to be parsed
- "arguments": "{\"tool_uses\":[{\"recipient_name\":\"product_title\",\"parameters\":{\"content\":\"Story Scribe\"}},{\"recipient_name\":\"one_liner\",\"parameters\":{\"content\":\"Transform interview transcripts into actionable user stories\"}}]}",
To extract actual tool calls:
1. Parse arguments JSON object
2. Iterate over tool_uses array to call functions:
- get function name from recipient_name value
- parameters will be JSON object for function arguments
"""
import openai
openai_client = openai.OpenAI()
with patch.object(
openai_client.chat.completions,
"create",
side_effect=_openai_hallucinated_tool_call_mock_response,
) as mock_response:
response = litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey! how's it going?"}],
client=openai_client,
)
print(f"response: {response}")
response_dict = response.model_dump()
tool_calls = response_dict["choices"][0]["message"]["tool_calls"]
print(f"tool_calls: {tool_calls}")
for idx, tc in enumerate(tool_calls):
if idx == 0:
print(f"tc in test_openai_hallucinated_tool_call: {tc}")
assert tc == {
"function": {
"arguments": '{"content": "Story Scribe"}',
"name": "product_title",
},
"id": "call_IzGXwVa5OfBd9XcCJOkt2q0s_0",
"type": "function",
}
elif idx == 1:
assert tc == {
"function": {
"arguments": '{"content": "Transform interview transcripts into actionable user stories"}',
"name": "one_liner",
},
"id": "call_IzGXwVa5OfBd9XcCJOkt2q0s_1",
"type": "function",
}
@pytest.mark.parametrize(
"function_name, expect_modification",
[
("multi_tool_use.parallel", True),
("my-fake-function", False),
],
)
def test_openai_hallucinated_tool_call_util(function_name, expect_modification):
"""
Patch for this issue: https://community.openai.com/t/model-tries-to-call-unknown-function-multi-tool-use-parallel/490653
Handle openai invalid tool calling response.
OpenAI assistant will sometimes return an invalid tool calling response, which needs to be parsed
- "arguments": "{\"tool_uses\":[{\"recipient_name\":\"product_title\",\"parameters\":{\"content\":\"Story Scribe\"}},{\"recipient_name\":\"one_liner\",\"parameters\":{\"content\":\"Transform interview transcripts into actionable user stories\"}}]}",
To extract actual tool calls:
1. Parse arguments JSON object
2. Iterate over tool_uses array to call functions:
- get function name from recipient_name value
- parameters will be JSON object for function arguments
"""
from litellm.utils import _handle_invalid_parallel_tool_calls
from litellm.types.utils import ChatCompletionMessageToolCall
response = _handle_invalid_parallel_tool_calls(
tool_calls=[
ChatCompletionMessageToolCall(
**{
"function": {
"arguments": '{"tool_uses":[{"recipient_name":"product_title","parameters":{"content":"Story Scribe"}},{"recipient_name":"one_liner","parameters":{"content":"Transform interview transcripts into actionable user stories"}}]}',
"name": function_name,
},
"id": "call_IzGXwVa5OfBd9XcCJOkt2q0s",
"type": "function",
}
)
]
)
print(f"response: {response}")
if expect_modification:
for idx, tc in enumerate(response):
if idx == 0:
assert tc.model_dump() == {
"function": {
"arguments": '{"content": "Story Scribe"}',
"name": "product_title",
},
"id": "call_IzGXwVa5OfBd9XcCJOkt2q0s_0",
"type": "function",
}
elif idx == 1:
assert tc.model_dump() == {
"function": {
"arguments": '{"content": "Transform interview transcripts into actionable user stories"}',
"name": "one_liner",
},
"id": "call_IzGXwVa5OfBd9XcCJOkt2q0s_1",
"type": "function",
}
else:
assert len(response) == 1
assert response[0].function.name == function_name