forked from phoenix/litellm-mirror
Litellm dev 10 14 2024 (#6221)
* fix(__init__.py): expose DualCache, RedisCache, InMemoryCache on root abstract internal file refactors from impacting users * feat(utils.py): handle invalid openai parallel tool calling response Fixes https://community.openai.com/t/model-tries-to-call-unknown-function-multi-tool-use-parallel/490653 * docs(bedrock.md): clarify all bedrock models are supported Closes https://github.com/BerriAI/litellm/issues/6168#issuecomment-2412082236
This commit is contained in:
parent
cda0a993e2
commit
39486e2003
5 changed files with 240 additions and 5 deletions
|
@ -2,7 +2,7 @@ import Tabs from '@theme/Tabs';
|
|||
import TabItem from '@theme/TabItem';
|
||||
|
||||
# AWS Bedrock
|
||||
Anthropic, Amazon Titan, A121 LLMs are Supported on Bedrock
|
||||
ALL Bedrock models (Anthropic, Meta, Mistral, Amazon, etc.) are Supported
|
||||
|
||||
LiteLLM requires `boto3` to be installed on your system for Bedrock requests
|
||||
```shell
|
||||
|
|
|
@ -7,7 +7,7 @@ import threading
|
|||
import os
|
||||
from typing import Callable, List, Optional, Dict, Union, Any, Literal, get_args
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||
from litellm.caching.caching import Cache
|
||||
from litellm.caching.caching import Cache, DualCache, RedisCache, InMemoryCache
|
||||
from litellm._logging import (
|
||||
set_verbose,
|
||||
_turn_on_debug,
|
||||
|
|
|
@ -7,9 +7,8 @@ from fastapi import HTTPException
|
|||
from pydantic import BaseModel
|
||||
|
||||
import litellm
|
||||
from litellm import ModelResponse
|
||||
from litellm import DualCache, ModelResponse
|
||||
from litellm._logging import verbose_proxy_logger
|
||||
from litellm.caching.caching import DualCache
|
||||
from litellm.integrations.custom_logger import CustomLogger
|
||||
from litellm.litellm_core_utils.core_helpers import _get_parent_otel_span_from_kwargs
|
||||
from litellm.proxy._types import CurrentItemRateLimit, UserAPIKeyAuth
|
||||
|
|
|
@ -79,6 +79,7 @@ from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
|||
from litellm.secret_managers.main import get_secret
|
||||
from litellm.types.llms.openai import (
|
||||
AllMessageValues,
|
||||
ChatCompletionAssistantToolCall,
|
||||
ChatCompletionNamedToolChoiceParam,
|
||||
ChatCompletionToolParam,
|
||||
ChatCompletionToolParamFunctionChunk,
|
||||
|
@ -89,11 +90,13 @@ from litellm.types.utils import (
|
|||
OPENAI_RESPONSE_HEADERS,
|
||||
CallTypes,
|
||||
ChatCompletionDeltaToolCall,
|
||||
ChatCompletionMessageToolCall,
|
||||
Choices,
|
||||
CostPerToken,
|
||||
Delta,
|
||||
Embedding,
|
||||
EmbeddingResponse,
|
||||
Function,
|
||||
ImageResponse,
|
||||
Message,
|
||||
ModelInfo,
|
||||
|
@ -5612,6 +5615,54 @@ def convert_to_streaming_response(response_object: Optional[dict] = None):
|
|||
yield model_response_object
|
||||
|
||||
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
def _handle_invalid_parallel_tool_calls(
|
||||
tool_calls: List[ChatCompletionMessageToolCall],
|
||||
):
|
||||
"""
|
||||
Handle hallucinated parallel tool call from openai - https://community.openai.com/t/model-tries-to-call-unknown-function-multi-tool-use-parallel/490653
|
||||
|
||||
Code modified from: https://github.com/phdowling/openai_multi_tool_use_parallel_patch/blob/main/openai_multi_tool_use_parallel_patch.py
|
||||
"""
|
||||
|
||||
if tool_calls is None:
|
||||
return
|
||||
|
||||
replacements: Dict[int, List[ChatCompletionMessageToolCall]] = defaultdict(list)
|
||||
for i, tool_call in enumerate(tool_calls):
|
||||
current_function = tool_call.function.name
|
||||
function_args = json.loads(tool_call.function.arguments)
|
||||
if current_function == "multi_tool_use.parallel":
|
||||
verbose_logger.debug(
|
||||
"OpenAI did a weird pseudo-multi-tool-use call, fixing call structure.."
|
||||
)
|
||||
for _fake_i, _fake_tool_use in enumerate(function_args["tool_uses"]):
|
||||
_function_args = _fake_tool_use["parameters"]
|
||||
_current_function = _fake_tool_use["recipient_name"]
|
||||
if _current_function.startswith("functions."):
|
||||
_current_function = _current_function[len("functions.") :]
|
||||
|
||||
fixed_tc = ChatCompletionMessageToolCall(
|
||||
id=f"{tool_call.id}_{_fake_i}",
|
||||
type="function",
|
||||
function=Function(
|
||||
name=_current_function, arguments=json.dumps(_function_args)
|
||||
),
|
||||
)
|
||||
replacements[i].append(fixed_tc)
|
||||
|
||||
shift = 0
|
||||
for i, replacement in replacements.items():
|
||||
tool_calls[:] = (
|
||||
tool_calls[: i + shift] + replacement + tool_calls[i + shift + 1 :]
|
||||
)
|
||||
shift += len(replacement)
|
||||
|
||||
return tool_calls
|
||||
|
||||
|
||||
def convert_to_model_response_object(
|
||||
response_object: Optional[dict] = None,
|
||||
model_response_object: Optional[
|
||||
|
@ -5707,6 +5758,18 @@ def convert_to_model_response_object(
|
|||
for idx, choice in enumerate(response_object["choices"]):
|
||||
## HANDLE JSON MODE - anthropic returns single function call]
|
||||
tool_calls = choice["message"].get("tool_calls", None)
|
||||
if tool_calls is not None:
|
||||
_openai_tool_calls = []
|
||||
for _tc in tool_calls:
|
||||
_openai_tc = ChatCompletionMessageToolCall(**_tc)
|
||||
_openai_tool_calls.append(_openai_tc)
|
||||
fixed_tool_calls = _handle_invalid_parallel_tool_calls(
|
||||
_openai_tool_calls
|
||||
)
|
||||
|
||||
if fixed_tool_calls is not None:
|
||||
tool_calls = fixed_tool_calls
|
||||
|
||||
message: Optional[Message] = None
|
||||
finish_reason: Optional[str] = None
|
||||
if (
|
||||
|
@ -5726,7 +5789,7 @@ def convert_to_model_response_object(
|
|||
content=choice["message"].get("content", None),
|
||||
role=choice["message"]["role"] or "assistant",
|
||||
function_call=choice["message"].get("function_call", None),
|
||||
tool_calls=choice["message"].get("tool_calls", None),
|
||||
tool_calls=tool_calls,
|
||||
)
|
||||
finish_reason = choice.get("finish_reason", None)
|
||||
if finish_reason is None:
|
||||
|
|
|
@ -4567,3 +4567,176 @@ def test_completion_response_ratelimit_headers(model, stream):
|
|||
assert v != "None" and v is not None
|
||||
assert "x-ratelimit-remaining-requests" in additional_headers
|
||||
assert "x-ratelimit-remaining-tokens" in additional_headers
|
||||
|
||||
|
||||
def _openai_hallucinated_tool_call_mock_response(
|
||||
*args, **kwargs
|
||||
) -> litellm.ModelResponse:
|
||||
new_response = MagicMock()
|
||||
new_response.headers = {"hello": "world"}
|
||||
|
||||
response_object = {
|
||||
"id": "chatcmpl-123",
|
||||
"object": "chat.completion",
|
||||
"created": 1677652288,
|
||||
"model": "gpt-3.5-turbo-0125",
|
||||
"system_fingerprint": "fp_44709d6fcb",
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"content": None,
|
||||
"role": "assistant",
|
||||
"tool_calls": [
|
||||
{
|
||||
"function": {
|
||||
"arguments": '{"tool_uses":[{"recipient_name":"product_title","parameters":{"content":"Story Scribe"}},{"recipient_name":"one_liner","parameters":{"content":"Transform interview transcripts into actionable user stories"}}]}',
|
||||
"name": "multi_tool_use.parallel",
|
||||
},
|
||||
"id": "call_IzGXwVa5OfBd9XcCJOkt2q0s",
|
||||
"type": "function",
|
||||
}
|
||||
],
|
||||
},
|
||||
"logprobs": None,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
],
|
||||
"usage": {"prompt_tokens": 9, "completion_tokens": 12, "total_tokens": 21},
|
||||
}
|
||||
from openai import OpenAI
|
||||
from openai.types.chat.chat_completion import ChatCompletion
|
||||
|
||||
pydantic_obj = ChatCompletion(**response_object) # type: ignore
|
||||
pydantic_obj.choices[0].message.role = None # type: ignore
|
||||
new_response.parse.return_value = pydantic_obj
|
||||
return new_response
|
||||
|
||||
|
||||
def test_openai_hallucinated_tool_call():
|
||||
"""
|
||||
Patch for this issue: https://community.openai.com/t/model-tries-to-call-unknown-function-multi-tool-use-parallel/490653
|
||||
|
||||
Handle openai invalid tool calling response.
|
||||
|
||||
OpenAI assistant will sometimes return an invalid tool calling response, which needs to be parsed
|
||||
|
||||
- "arguments": "{\"tool_uses\":[{\"recipient_name\":\"product_title\",\"parameters\":{\"content\":\"Story Scribe\"}},{\"recipient_name\":\"one_liner\",\"parameters\":{\"content\":\"Transform interview transcripts into actionable user stories\"}}]}",
|
||||
|
||||
To extract actual tool calls:
|
||||
|
||||
1. Parse arguments JSON object
|
||||
2. Iterate over tool_uses array to call functions:
|
||||
- get function name from recipient_name value
|
||||
- parameters will be JSON object for function arguments
|
||||
"""
|
||||
import openai
|
||||
|
||||
openai_client = openai.OpenAI()
|
||||
with patch.object(
|
||||
openai_client.chat.completions,
|
||||
"create",
|
||||
side_effect=_openai_hallucinated_tool_call_mock_response,
|
||||
) as mock_response:
|
||||
response = litellm.completion(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=[{"role": "user", "content": "Hey! how's it going?"}],
|
||||
client=openai_client,
|
||||
)
|
||||
print(f"response: {response}")
|
||||
|
||||
response_dict = response.model_dump()
|
||||
|
||||
tool_calls = response_dict["choices"][0]["message"]["tool_calls"]
|
||||
|
||||
print(f"tool_calls: {tool_calls}")
|
||||
|
||||
for idx, tc in enumerate(tool_calls):
|
||||
if idx == 0:
|
||||
print(f"tc in test_openai_hallucinated_tool_call: {tc}")
|
||||
assert tc == {
|
||||
"function": {
|
||||
"arguments": '{"content": "Story Scribe"}',
|
||||
"name": "product_title",
|
||||
},
|
||||
"id": "call_IzGXwVa5OfBd9XcCJOkt2q0s_0",
|
||||
"type": "function",
|
||||
}
|
||||
elif idx == 1:
|
||||
assert tc == {
|
||||
"function": {
|
||||
"arguments": '{"content": "Transform interview transcripts into actionable user stories"}',
|
||||
"name": "one_liner",
|
||||
},
|
||||
"id": "call_IzGXwVa5OfBd9XcCJOkt2q0s_1",
|
||||
"type": "function",
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"function_name, expect_modification",
|
||||
[
|
||||
("multi_tool_use.parallel", True),
|
||||
("my-fake-function", False),
|
||||
],
|
||||
)
|
||||
def test_openai_hallucinated_tool_call_util(function_name, expect_modification):
|
||||
"""
|
||||
Patch for this issue: https://community.openai.com/t/model-tries-to-call-unknown-function-multi-tool-use-parallel/490653
|
||||
|
||||
Handle openai invalid tool calling response.
|
||||
|
||||
OpenAI assistant will sometimes return an invalid tool calling response, which needs to be parsed
|
||||
|
||||
- "arguments": "{\"tool_uses\":[{\"recipient_name\":\"product_title\",\"parameters\":{\"content\":\"Story Scribe\"}},{\"recipient_name\":\"one_liner\",\"parameters\":{\"content\":\"Transform interview transcripts into actionable user stories\"}}]}",
|
||||
|
||||
To extract actual tool calls:
|
||||
|
||||
1. Parse arguments JSON object
|
||||
2. Iterate over tool_uses array to call functions:
|
||||
- get function name from recipient_name value
|
||||
- parameters will be JSON object for function arguments
|
||||
"""
|
||||
from litellm.utils import _handle_invalid_parallel_tool_calls
|
||||
from litellm.types.utils import ChatCompletionMessageToolCall
|
||||
|
||||
response = _handle_invalid_parallel_tool_calls(
|
||||
tool_calls=[
|
||||
ChatCompletionMessageToolCall(
|
||||
**{
|
||||
"function": {
|
||||
"arguments": '{"tool_uses":[{"recipient_name":"product_title","parameters":{"content":"Story Scribe"}},{"recipient_name":"one_liner","parameters":{"content":"Transform interview transcripts into actionable user stories"}}]}',
|
||||
"name": function_name,
|
||||
},
|
||||
"id": "call_IzGXwVa5OfBd9XcCJOkt2q0s",
|
||||
"type": "function",
|
||||
}
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
print(f"response: {response}")
|
||||
|
||||
if expect_modification:
|
||||
for idx, tc in enumerate(response):
|
||||
if idx == 0:
|
||||
assert tc.model_dump() == {
|
||||
"function": {
|
||||
"arguments": '{"content": "Story Scribe"}',
|
||||
"name": "product_title",
|
||||
},
|
||||
"id": "call_IzGXwVa5OfBd9XcCJOkt2q0s_0",
|
||||
"type": "function",
|
||||
}
|
||||
elif idx == 1:
|
||||
assert tc.model_dump() == {
|
||||
"function": {
|
||||
"arguments": '{"content": "Transform interview transcripts into actionable user stories"}',
|
||||
"name": "one_liner",
|
||||
},
|
||||
"id": "call_IzGXwVa5OfBd9XcCJOkt2q0s_1",
|
||||
"type": "function",
|
||||
}
|
||||
else:
|
||||
assert len(response) == 1
|
||||
assert response[0].function.name == function_name
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue