forked from phoenix/litellm-mirror
move cohere to http endpoint
This commit is contained in:
parent
70a36740bc
commit
3b4064a58f
8 changed files with 175 additions and 45 deletions
Binary file not shown.
Binary file not shown.
101
litellm/llms/cohere.py
Normal file
101
litellm/llms/cohere.py
Normal file
|
@ -0,0 +1,101 @@
|
|||
import os
|
||||
import json
|
||||
from enum import Enum
|
||||
import requests
|
||||
import time
|
||||
from typing import Callable
|
||||
from litellm.utils import ModelResponse
|
||||
|
||||
class CohereError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
def validate_environment(api_key):
|
||||
headers = {
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
}
|
||||
if api_key:
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
return headers
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
):
|
||||
headers = validate_environment(api_key)
|
||||
completion_url = "https://api.cohere.ai/v1/generate"
|
||||
model = model
|
||||
prompt = " ".join(message["content"] for message in messages)
|
||||
data = {
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
response = requests.post(
|
||||
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
|
||||
)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
original_response=response.text,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response.text}")
|
||||
## RESPONSE OBJECT
|
||||
completion_response = response.json()
|
||||
if "error" in completion_response:
|
||||
raise CohereError(
|
||||
message=completion_response["error"],
|
||||
status_code=response.status_code,
|
||||
)
|
||||
else:
|
||||
try:
|
||||
model_response["choices"][0]["message"]["content"] = completion_response["generations"][0]["text"]
|
||||
except:
|
||||
raise CohereError(message=json.dumps(completion_response), status_code=response.status_code)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
)
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"]["content"])
|
||||
)
|
||||
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
return model_response
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
|
@ -32,6 +32,7 @@ from .llms import nlp_cloud
|
|||
from .llms import baseten
|
||||
from .llms import vllm
|
||||
from .llms import ollama
|
||||
from .llms import cohere
|
||||
import tiktoken
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Callable, List, Optional, Dict
|
||||
|
@ -547,12 +548,6 @@ def completion(
|
|||
input=messages, api_key=openai.api_key, original_response=response
|
||||
)
|
||||
elif model in litellm.cohere_models:
|
||||
# import cohere/if it fails then pip install cohere
|
||||
try:
|
||||
import cohere
|
||||
except:
|
||||
raise Exception("Cohere import failed please run `pip install cohere`")
|
||||
|
||||
cohere_key = (
|
||||
api_key
|
||||
or litellm.cohere_key
|
||||
|
@ -560,35 +555,23 @@ def completion(
|
|||
or get_secret("CO_API_KEY")
|
||||
or litellm.api_key
|
||||
)
|
||||
co = cohere.Client(cohere_key)
|
||||
prompt = " ".join([message["content"] for message in messages])
|
||||
## LOGGING
|
||||
logging.pre_call(input=prompt, api_key=cohere_key)
|
||||
## COMPLETION CALL
|
||||
response = co.generate(model=model, prompt=prompt, **optional_params)
|
||||
model_response = cohere.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
api_key=cohere_key,
|
||||
logging_obj=logging # model call logging done inside the class as we make need to modify I/O to fit aleph alpha's requirements
|
||||
)
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
# don't try to access stream object,
|
||||
response = CustomStreamWrapper(response, model, logging_obj=logging)
|
||||
response = CustomStreamWrapper(model_response, model, logging_obj=logging)
|
||||
return response
|
||||
## LOGGING
|
||||
logging.post_call(
|
||||
input=prompt, api_key=cohere_key, original_response=response
|
||||
)
|
||||
## USAGE
|
||||
completion_response = response[0].text
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(encoding.encode(completion_response))
|
||||
## RESPONSE OBJECT
|
||||
model_response["choices"][0]["message"]["content"] = completion_response
|
||||
if response[0].finish_reason:
|
||||
model_response.choices[0].finish_reason = response[0].finish_reason
|
||||
model_response["created"] = time.time()
|
||||
model_response["model"] = model
|
||||
model_response["usage"] = {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
}
|
||||
response = model_response
|
||||
elif (
|
||||
(
|
||||
|
|
|
@ -144,7 +144,7 @@ def test_completion_nlp_cloud_streaming():
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
test_completion_nlp_cloud_streaming()
|
||||
# test_completion_nlp_cloud_streaming()
|
||||
# def test_completion_hf_api():
|
||||
# try:
|
||||
# user_message = "write some code to find the sum of two numbers"
|
||||
|
@ -183,7 +183,6 @@ def test_completion_cohere(): # commenting for now as the cohere endpoint is bei
|
|||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
response_str = response["choices"][0]["message"]["content"]
|
||||
print(f"str response{response_str}")
|
||||
response_str_2 = response.choices[0].message.content
|
||||
if type(response_str) != str:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
@ -192,6 +191,8 @@ def test_completion_cohere(): # commenting for now as the cohere endpoint is bei
|
|||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
# test_completion_cohere()
|
||||
|
||||
def test_completion_cohere_stream():
|
||||
try:
|
||||
messages = [
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
|
||||
import sys, os, asyncio
|
||||
import traceback
|
||||
import time
|
||||
import time, pytest
|
||||
|
||||
sys.path.insert(
|
||||
0, os.path.abspath("../..")
|
||||
|
@ -24,6 +24,30 @@ def logger_fn(model_call_object: dict):
|
|||
user_message = "Hello, how are you?"
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
|
||||
def test_completion_cohere_stream():
|
||||
try:
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "how does a court case get to the Supreme Court?",
|
||||
},
|
||||
]
|
||||
response = completion(
|
||||
model="command-nightly", messages=messages, stream=True, max_tokens=50
|
||||
)
|
||||
complete_response = ""
|
||||
# Add any assertions here to check the response
|
||||
for chunk in response:
|
||||
print(f"chunk: {chunk}")
|
||||
complete_response += chunk["choices"][0]["delta"]["content"]
|
||||
if complete_response == "":
|
||||
raise Exception("Empty response received")
|
||||
print(f"completion_response: {complete_response}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
# test on baseten completion call
|
||||
# try:
|
||||
# response = completion(
|
||||
|
|
|
@ -1854,7 +1854,7 @@ def exception_type(model, original_exception, custom_llm_provider):
|
|||
llm_provider="replicate",
|
||||
model=model
|
||||
)
|
||||
elif model in litellm.cohere_models: # Cohere
|
||||
elif model in litellm.cohere_models or custom_llm_provider == "cohere": # Cohere
|
||||
if (
|
||||
"invalid api token" in error_str
|
||||
or "No API key provided." in error_str
|
||||
|
@ -1872,6 +1872,21 @@ def exception_type(model, original_exception, custom_llm_provider):
|
|||
model=model,
|
||||
llm_provider="cohere",
|
||||
)
|
||||
elif hasattr(original_exception, "status_code"):
|
||||
if original_exception.status_code == 400 or original_exception.status_code == 498:
|
||||
exception_mapping_worked = True
|
||||
raise InvalidRequestError(
|
||||
message=f"CohereException - {original_exception.message}",
|
||||
llm_provider="cohere",
|
||||
model=model
|
||||
)
|
||||
elif original_exception.status_code == 500:
|
||||
exception_mapping_worked = True
|
||||
raise ServiceUnavailableError(
|
||||
message=f"CohereException - {original_exception.message}",
|
||||
llm_provider="cohere",
|
||||
model=model
|
||||
)
|
||||
elif (
|
||||
"CohereConnectionError" in exception_type
|
||||
): # cohere seems to fire these errors when we load test it (1k+ messages / min)
|
||||
|
@ -2287,14 +2302,10 @@ class CustomStreamWrapper:
|
|||
self.model = model
|
||||
self.custom_llm_provider = custom_llm_provider
|
||||
self.logging_obj = logging_obj
|
||||
self.completion_stream = completion_stream
|
||||
if self.logging_obj:
|
||||
# Log the type of the received item
|
||||
self.logging_obj.post_call(str(type(completion_stream)))
|
||||
if model in litellm.cohere_models:
|
||||
# these do not return an iterator, so we need to wrap it in one
|
||||
self.completion_stream = iter(completion_stream)
|
||||
else:
|
||||
self.completion_stream = completion_stream
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
@ -2359,6 +2370,16 @@ class CustomStreamWrapper:
|
|||
except:
|
||||
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
||||
|
||||
def handle_cohere_chunk(self, chunk):
|
||||
chunk = chunk.decode("utf-8")
|
||||
print(f"cohere chunk: {chunk}")
|
||||
data_json = json.loads(chunk)
|
||||
try:
|
||||
print(f"data json: {data_json}")
|
||||
return data_json["text"]
|
||||
except:
|
||||
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
||||
|
||||
def handle_openai_text_completion_chunk(self, chunk):
|
||||
try:
|
||||
return chunk["choices"][0]["text"]
|
||||
|
@ -2416,9 +2437,6 @@ class CustomStreamWrapper:
|
|||
if text_data == "":
|
||||
return self.__next__()
|
||||
completion_obj["content"] = text_data
|
||||
elif self.model in litellm.cohere_models:
|
||||
chunk = next(self.completion_stream)
|
||||
completion_obj["content"] = chunk.text
|
||||
elif self.custom_llm_provider and self.custom_llm_provider == "huggingface":
|
||||
chunk = next(self.completion_stream)
|
||||
completion_obj["content"] = self.handle_huggingface_chunk(chunk)
|
||||
|
@ -2440,6 +2458,9 @@ class CustomStreamWrapper:
|
|||
elif self.model in litellm.nlp_cloud_models or self.custom_llm_provider == "nlp_cloud":
|
||||
chunk = next(self.completion_stream)
|
||||
completion_obj["content"] = self.handle_nlp_cloud_chunk(chunk)
|
||||
elif self.model in litellm.cohere_models or self.custom_llm_provider == "cohere":
|
||||
chunk = next(self.completion_stream)
|
||||
completion_obj["content"] = self.handle_cohere_chunk(chunk)
|
||||
else: # openai chat/azure models
|
||||
chunk = next(self.completion_stream)
|
||||
return chunk # open ai returns finish_reason, we should just return the openai chunk
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "litellm"
|
||||
version = "0.1.625"
|
||||
version = "0.1.626"
|
||||
description = "Library to easily interface with LLM API providers"
|
||||
authors = ["BerriAI"]
|
||||
license = "MIT License"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue