improvements to proxy cli and finish reason mapping for anthropic

This commit is contained in:
Krrish Dholakia 2023-09-30 18:09:08 -07:00
parent 0cc34d6543
commit 3ca79a88bb
8 changed files with 84 additions and 25 deletions

View file

@ -217,5 +217,4 @@ def prompt_factory(model: str, messages: list):
else: else:
return hf_chat_template(original_model_name, messages) return hf_chat_template(original_model_name, messages)
except: except:
traceback.print_exc()
return default_pt(messages=messages) # default that covers Bloom, T-5, any non-chat tuned model (e.g. base Llama2) return default_pt(messages=messages) # default that covers Bloom, T-5, any non-chat tuned model (e.g. base Llama2)

View file

@ -1,9 +1,55 @@
import click import click
import subprocess import subprocess
import os import os, appdirs
from dotenv import load_dotenv from dotenv import load_dotenv
load_dotenv() load_dotenv()
from importlib import resources
import shutil
config_filename = ".env.litellm"
# Using appdirs to determine user-specific config path
config_dir = appdirs.user_config_dir("litellm")
user_config_path = os.path.join(config_dir, config_filename)
def load_config():
try:
if not os.path.exists(user_config_path):
# If user's config doesn't exist, copy the default config from the package
here = os.path.abspath(os.path.dirname(__file__))
parent_dir = os.path.dirname(here)
default_config_path = os.path.join(parent_dir, '.env.template')
# Ensure the user-specific directory exists
os.makedirs(config_dir, exist_ok=True)
# Copying the file using shutil.copy
shutil.copy(default_config_path, user_config_path)
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
load_dotenv(dotenv_path=user_config_path)
except:
pass
def open_config():
# Create the .env file if it doesn't exist
if not os.path.exists(user_config_path):
# If user's env doesn't exist, copy the default env from the package
here = os.path.abspath(os.path.dirname(__file__))
parent_dir = os.path.dirname(here)
default_env_path = os.path.join(parent_dir, '.env.template')
# Ensure the user-specific directory exists
os.makedirs(config_dir, exist_ok=True)
# Copying the file using shutil.copy
try:
shutil.copy(default_env_path, user_config_path)
except Exception as e:
print(f"Failed to copy .env.template: {e}")
# Open the .env file in the default editor
if os.name == 'nt': # For Windows
os.startfile(user_config_path)
elif os.name == 'posix': # For MacOS, Linux, and anything using Bash
subprocess.call(('open', '-t', user_config_path))
@click.command() @click.command()
@click.option('--port', default=8000, help='Port to bind the server to.') @click.option('--port', default=8000, help='Port to bind the server to.')
@ -16,22 +62,17 @@ load_dotenv()
@click.option('--telemetry', default=True, type=bool, help='Helps us know if people are using this feature. Turn this off by doing `--telemetry False`') @click.option('--telemetry', default=True, type=bool, help='Helps us know if people are using this feature. Turn this off by doing `--telemetry False`')
@click.option('--config', is_flag=True, help='Create and open .env file from .env.template') @click.option('--config', is_flag=True, help='Create and open .env file from .env.template')
@click.option('--test', default=None, help='proxy chat completions url to make a test request to') @click.option('--test', default=None, help='proxy chat completions url to make a test request to')
def run_server(port, api_base, model, deploy, debug, temperature, max_tokens, telemetry, config, test): @click.option('--local', is_flag=True, default=False, help='for local debugging')
def run_server(port, api_base, model, deploy, debug, temperature, max_tokens, telemetry, config, test, local):
if config: if config:
if os.path.exists('.env.template'): open_config()
if not os.path.exists('.env'):
with open('.env.template', 'r') as source:
data = source.read()
with open('.env', 'w') as destination:
destination.write(data)
click.echo('Opening .env file...') if local:
subprocess.call(['open', '.env']) # replace `open` with `start` on Windows from proxy_server import app, initialize, deploy_proxy
else: debug = True
click.echo('No .env.template file found.') else:
from .proxy_server import app, initialize, deploy_proxy
from .proxy_server import app, initialize, deploy_proxy
# from proxy_server import app, initialize, deploy_proxy
if deploy == True: if deploy == True:
print(f"\033[32mLiteLLM: Deploying your proxy to api.litellm.ai\033[0m\n") print(f"\033[32mLiteLLM: Deploying your proxy to api.litellm.ai\033[0m\n")
print(f"\033[32mLiteLLM: Deploying proxy for model: {model}\033[0m\n") print(f"\033[32mLiteLLM: Deploying proxy for model: {model}\033[0m\n")
@ -57,6 +98,7 @@ def run_server(port, api_base, model, deploy, debug, temperature, max_tokens, te
click.echo(f'LiteLLM: response from proxy {response}') click.echo(f'LiteLLM: response from proxy {response}')
return return
else: else:
load_config()
initialize(model, api_base, debug, temperature, max_tokens, telemetry) initialize(model, api_base, debug, temperature, max_tokens, telemetry)

View file

@ -120,9 +120,8 @@ def model_list():
async def completion(request: Request): async def completion(request: Request):
data = await request.json() data = await request.json()
print_verbose(f"data passed in: {data}") print_verbose(f"data passed in: {data}")
if (user_model is None): if user_model:
raise ValueError("Proxy model needs to be set") data["model"] = user_model
data["model"] = user_model
if user_api_base: if user_api_base:
data["api_base"] = user_api_base data["api_base"] = user_api_base
## check for custom prompt template ## ## check for custom prompt template ##
@ -154,9 +153,8 @@ async def completion(request: Request):
async def chat_completion(request: Request): async def chat_completion(request: Request):
data = await request.json() data = await request.json()
print_verbose(f"data passed in: {data}") print_verbose(f"data passed in: {data}")
if (user_model is None): if user_model:
raise ValueError("Proxy model needs to be set") data["model"] = user_model
data["model"] = user_model
# override with user settings # override with user settings
if user_temperature: if user_temperature:
data["temperature"] = user_temperature data["temperature"] = user_temperature
@ -186,7 +184,6 @@ async def chat_completion(request: Request):
) )
response = litellm.completion(**data) response = litellm.completion(**data)
if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
print("reaches stream")
return StreamingResponse(data_generator(response), media_type='text/event-stream') return StreamingResponse(data_generator(response), media_type='text/event-stream')
print_verbose(f"response: {response}") print_verbose(f"response: {response}")
return response return response

View file

@ -94,6 +94,14 @@ last_fetched_at_keys = None
def _generate_id(): # private helper function def _generate_id(): # private helper function
return 'chatcmpl-' + str(uuid.uuid4()) return 'chatcmpl-' + str(uuid.uuid4())
def map_finish_reason(finish_reason: str): # openai supports 5 stop sequences - 'stop', 'length', 'function_call', 'content_filter', 'null'
# anthropic mapping
print(f"receives finish reason: {finish_reason}")
if finish_reason == "stop_sequence":
return "stop"
return finish_reason
class Message(OpenAIObject): class Message(OpenAIObject):
def __init__(self, content="default", role="assistant", logprobs=None, **params): def __init__(self, content="default", role="assistant", logprobs=None, **params):
super(Message, self).__init__(**params) super(Message, self).__init__(**params)
@ -114,7 +122,7 @@ class Choices(OpenAIObject):
def __init__(self, finish_reason=None, index=0, message=None, **params): def __init__(self, finish_reason=None, index=0, message=None, **params):
super(Choices, self).__init__(**params) super(Choices, self).__init__(**params)
if finish_reason: if finish_reason:
self.finish_reason = finish_reason self.finish_reason = map_finish_reason(finish_reason)
else: else:
self.finish_reason = "stop" self.finish_reason = "stop"
self.index = index self.index = index
@ -3200,6 +3208,7 @@ class CustomStreamWrapper:
model_response.choices[0].delta = Delta(**completion_obj) model_response.choices[0].delta = Delta(**completion_obj)
return model_response return model_response
elif model_response.choices[0].finish_reason: elif model_response.choices[0].finish_reason:
model_response.choices[0].finish_reason = map_finish_reason(model_response.choices[0].finish_reason) # ensure consistent output to openai
return model_response return model_response
except StopIteration: except StopIteration:
raise StopIteration raise StopIteration

13
poetry.lock generated
View file

@ -122,6 +122,17 @@ files = [
[package.dependencies] [package.dependencies]
frozenlist = ">=1.1.0" frozenlist = ">=1.1.0"
[[package]]
name = "appdirs"
version = "1.4.4"
description = "A small Python module for determining appropriate platform-specific dirs, e.g. a \"user data dir\"."
optional = false
python-versions = "*"
files = [
{file = "appdirs-1.4.4-py2.py3-none-any.whl", hash = "sha256:a841dacd6b99318a741b166adb07e19ee71a274450e68237b4650ca1055ab128"},
{file = "appdirs-1.4.4.tar.gz", hash = "sha256:7d5d0167b2b1ba821647616af46a749d1c653740dd0d2415100fe26e27afdf41"},
]
[[package]] [[package]]
name = "async-timeout" name = "async-timeout"
version = "4.0.3" version = "4.0.3"
@ -1074,4 +1085,4 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
[metadata] [metadata]
lock-version = "2.0" lock-version = "2.0"
python-versions = "^3.8" python-versions = "^3.8"
content-hash = "0fa234d1342838a6cc444dd996dbe404ca2cd6c872dcf560dbe420a2956aaecd" content-hash = "c8cae152cee4eda56560529476234bc5e91171c6207641af797e7bebf720a499"

View file

@ -14,6 +14,7 @@ tiktoken = ">=0.4.0"
importlib-metadata = ">=6.8.0" importlib-metadata = ">=6.8.0"
tokenizers = "*" tokenizers = "*"
click = "*" click = "*"
appdirs = "^1.4.4"
[tool.poetry.scripts] [tool.poetry.scripts]
litellm = 'litellm:run_server' litellm = 'litellm:run_server'