diff --git a/docs/my-website/docs/providers/openai.md b/docs/my-website/docs/providers/openai.md index adc723f67..9a01fa470 100644 --- a/docs/my-website/docs/providers/openai.md +++ b/docs/my-website/docs/providers/openai.md @@ -98,6 +98,62 @@ response = completion( | babbage-002 | `response = completion(model="babbage-002", messages=messages)` | | davinci-002 | `response = completion(model="davinci-002", messages=messages)` | +## Advanced + +### Parallel Function calling +See a detailed walthrough of parallel function calling with litellm [here](https://docs.litellm.ai/docs/completion/function_call) +```python +import litellm +import json +# set openai api key +import os +os.environ['OPENAI_API_KEY'] = "" # litellm reads OPENAI_API_KEY from .env and sends the request +# Example dummy function hard coded to return the same weather +# In production, this could be your backend API or an external API +def get_current_weather(location, unit="fahrenheit"): + """Get the current weather in a given location""" + if "tokyo" in location.lower(): + return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"}) + elif "san francisco" in location.lower(): + return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}) + elif "paris" in location.lower(): + return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"}) + else: + return json.dumps({"location": location, "temperature": "unknown"}) + +messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}] +tools = [ + { + "type": "function", + "function": { + "name": "get_current_weather", + "description": "Get the current weather in a given location", + "parameters": { + "type": "object", + "properties": { + "location": { + "type": "string", + "description": "The city and state, e.g. San Francisco, CA", + }, + "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, + }, + "required": ["location"], + }, + }, + } +] + +response = litellm.completion( + model="gpt-3.5-turbo-1106", + messages=messages, + tools=tools, + tool_choice="auto", # auto is default, but we'll be explicit +) +print("\nLLM Response1:\n", response) +response_message = response.choices[0].message +tool_calls = response.choices[0].message.tool_calls +``` + ### Setting Organization-ID for completion calls This can be set in one of the following ways: