Merge branch 'main' into litellm_dev_11_22_2024

This commit is contained in:
Krish Dholakia 2024-11-23 13:52:17 +05:30 committed by GitHub
commit 4021206ac2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
26 changed files with 845 additions and 146 deletions

View file

@ -625,6 +625,48 @@ jobs:
paths:
- llm_translation_coverage.xml
- llm_translation_coverage
pass_through_unit_testing:
docker:
- image: cimg/python:3.11
auth:
username: ${DOCKERHUB_USERNAME}
password: ${DOCKERHUB_PASSWORD}
working_directory: ~/project
steps:
- checkout
- run:
name: Install Dependencies
command: |
python -m pip install --upgrade pip
python -m pip install -r requirements.txt
pip install "pytest==7.3.1"
pip install "pytest-retry==1.6.3"
pip install "pytest-cov==5.0.0"
pip install "pytest-asyncio==0.21.1"
pip install "respx==0.21.1"
# Run pytest and generate JUnit XML report
- run:
name: Run tests
command: |
pwd
ls
python -m pytest -vv tests/pass_through_unit_tests --cov=litellm --cov-report=xml -x -s -v --junitxml=test-results/junit.xml --durations=5
no_output_timeout: 120m
- run:
name: Rename the coverage files
command: |
mv coverage.xml pass_through_unit_tests_coverage.xml
mv .coverage pass_through_unit_tests_coverage
# Store test results
- store_test_results:
path: test-results
- persist_to_workspace:
root: .
paths:
- pass_through_unit_tests_coverage.xml
- pass_through_unit_tests_coverage
image_gen_testing:
docker:
- image: cimg/python:3.11
@ -923,7 +965,7 @@ jobs:
command: |
pwd
ls
python -m pytest -s -vv tests/*.py -x --junitxml=test-results/junit.xml --durations=5 --ignore=tests/otel_tests --ignore=tests/pass_through_tests --ignore=tests/proxy_admin_ui_tests --ignore=tests/load_tests --ignore=tests/llm_translation --ignore=tests/image_gen_tests
python -m pytest -s -vv tests/*.py -x --junitxml=test-results/junit.xml --durations=5 --ignore=tests/otel_tests --ignore=tests/pass_through_tests --ignore=tests/proxy_admin_ui_tests --ignore=tests/load_tests --ignore=tests/llm_translation --ignore=tests/image_gen_tests --ignore=tests/pass_through_unit_tests
no_output_timeout: 120m
# Store test results
@ -1137,6 +1179,7 @@ jobs:
pip install "PyGithub==1.59.1"
pip install "google-cloud-aiplatform==1.59.0"
pip install anthropic
# Run pytest and generate JUnit XML report
- run:
name: Build Docker image
command: docker build -t my-app:latest -f ./docker/Dockerfile.database .
@ -1172,6 +1215,26 @@ jobs:
- run:
name: Wait for app to be ready
command: dockerize -wait http://localhost:4000 -timeout 5m
# New steps to run Node.js test
- run:
name: Install Node.js
command: |
curl -fsSL https://deb.nodesource.com/setup_18.x | sudo -E bash -
sudo apt-get install -y nodejs
node --version
npm --version
- run:
name: Install Node.js dependencies
command: |
npm install @google-cloud/vertexai
npm install --save-dev jest
- run:
name: Run Vertex AI tests
command: |
npx jest tests/pass_through_tests/test_vertex.test.js --verbose
no_output_timeout: 30m
- run:
name: Run tests
command: |
@ -1179,7 +1242,6 @@ jobs:
ls
python -m pytest -vv tests/pass_through_tests/ -x --junitxml=test-results/junit.xml --durations=5
no_output_timeout: 120m
# Store test results
- store_test_results:
path: test-results
@ -1205,7 +1267,7 @@ jobs:
python -m venv venv
. venv/bin/activate
pip install coverage
coverage combine llm_translation_coverage logging_coverage litellm_router_coverage local_testing_coverage litellm_assistants_api_coverage auth_ui_unit_tests_coverage langfuse_coverage caching_coverage litellm_proxy_unit_tests_coverage image_gen_coverage
coverage combine llm_translation_coverage logging_coverage litellm_router_coverage local_testing_coverage litellm_assistants_api_coverage auth_ui_unit_tests_coverage langfuse_coverage caching_coverage litellm_proxy_unit_tests_coverage image_gen_coverage pass_through_unit_tests_coverage
coverage xml
- codecov/upload:
file: ./coverage.xml
@ -1494,6 +1556,12 @@ workflows:
only:
- main
- /litellm_.*/
- pass_through_unit_testing:
filters:
branches:
only:
- main
- /litellm_.*/
- image_gen_testing:
filters:
branches:
@ -1509,6 +1577,7 @@ workflows:
- upload-coverage:
requires:
- llm_translation_testing
- pass_through_unit_testing
- image_gen_testing
- logging_testing
- litellm_router_testing
@ -1549,6 +1618,7 @@ workflows:
- load_testing
- test_bad_database_url
- llm_translation_testing
- pass_through_unit_testing
- image_gen_testing
- logging_testing
- litellm_router_testing

View file

@ -12,6 +12,71 @@ Looking for the Unified API (OpenAI format) for VertexAI ? [Go here - using vert
:::
Pass-through endpoints for Vertex AI - call provider-specific endpoint, in native format (no translation).
Just replace `https://REGION-aiplatform.googleapis.com` with `LITELLM_PROXY_BASE_URL/vertex-ai`
#### **Example Usage**
<Tabs>
<TabItem value="curl" label="curl">
```bash
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"contents":[{
"role": "user",
"parts":[{"text": "How are you doing today?"}]
}]
}'
```
</TabItem>
<TabItem value="js" label="Vertex Node.js SDK">
```javascript
const { VertexAI } = require('@google-cloud/vertexai');
const vertexAI = new VertexAI({
project: 'your-project-id', // enter your vertex project id
location: 'us-central1', // enter your vertex region
apiEndpoint: "localhost:4000/vertex-ai" // <proxy-server-url>/vertex-ai # note, do not include 'https://' in the url
});
const model = vertexAI.getGenerativeModel({
model: 'gemini-1.0-pro'
}, {
customHeaders: {
"x-litellm-api-key": "sk-1234" // Your litellm Virtual Key
}
});
async function generateContent() {
try {
const prompt = {
contents: [{
role: 'user',
parts: [{ text: 'How are you doing today?' }]
}]
};
const response = await model.generateContent(prompt);
console.log('Response:', response);
} catch (error) {
console.error('Error:', error);
}
}
generateContent();
```
</TabItem>
</Tabs>
## Supported API Endpoints
- Gemini API

View file

@ -1528,7 +1528,8 @@ class AzureChatCompletion(BaseLLM):
prompt: Optional[str] = None,
) -> dict:
client_session = (
litellm.aclient_session or httpx.AsyncClient()
litellm.aclient_session
or get_async_httpx_client(llm_provider=litellm.LlmProviders.AZURE).client
) # handle dall-e-2 calls
if "gateway.ai.cloudflare.com" in api_base:

View file

@ -8,8 +8,7 @@ from httpx import USE_CLIENT_DEFAULT, AsyncHTTPTransport, HTTPTransport
import litellm
from litellm.caching import InMemoryCache
from .types import httpxSpecialProvider
from litellm.types.llms.custom_http import *
if TYPE_CHECKING:
from litellm import LlmProviders

View file

@ -1,11 +0,0 @@
from enum import Enum
import litellm
class httpxSpecialProvider(str, Enum):
LoggingCallback = "logging_callback"
GuardrailCallback = "guardrail_callback"
Caching = "caching"
Oauth2Check = "oauth2_check"
SecretManager = "secret_manager"

View file

@ -14,6 +14,7 @@ import requests # type: ignore
import litellm
from litellm import verbose_logger
from litellm.llms.custom_httpx.http_handler import get_async_httpx_client
from litellm.secret_managers.main import get_secret_str
from litellm.types.utils import ModelInfo, ProviderField, StreamingChoices
@ -456,7 +457,10 @@ def ollama_completion_stream(url, data, logging_obj):
async def ollama_async_streaming(url, data, model_response, encoding, logging_obj):
try:
client = httpx.AsyncClient()
_async_http_client = get_async_httpx_client(
llm_provider=litellm.LlmProviders.OLLAMA
)
client = _async_http_client.client
async with client.stream(
url=f"{url}", json=data, method="POST", timeout=litellm.request_timeout
) as response:

View file

@ -13,6 +13,7 @@ from pydantic import BaseModel
import litellm
from litellm import verbose_logger
from litellm.llms.custom_httpx.http_handler import get_async_httpx_client
from litellm.types.llms.ollama import OllamaToolCall, OllamaToolCallFunction
from litellm.types.llms.openai import ChatCompletionAssistantToolCall
from litellm.types.utils import StreamingChoices
@ -445,7 +446,10 @@ async def ollama_async_streaming(
url, api_key, data, model_response, encoding, logging_obj
):
try:
client = httpx.AsyncClient()
_async_http_client = get_async_httpx_client(
llm_provider=litellm.LlmProviders.OLLAMA
)
client = _async_http_client.client
_request = {
"url": f"{url}",
"json": data,

View file

@ -11,7 +11,28 @@ model_list:
model: vertex_ai/claude-3-5-sonnet-v2
vertex_ai_project: "adroit-crow-413218"
vertex_ai_location: "us-east5"
- model_name: fake-openai-endpoint
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
router_settings:
model_group_alias:
"gpt-4-turbo": # Aliased model name
model: "gpt-4" # Actual model name in 'model_list'
hidden: true
litellm_settings:
success_callback: ["langfuse"]
callbacks: ["prometheus"]
default_team_settings:
- team_id: team-1
success_callback: ["langfuse"]
failure_callback: ["langfuse"]
langfuse_public_key: os.environ/LANGFUSE_PROJECT1_PUBLIC # Project 1
langfuse_secret: os.environ/LANGFUSE_PROJECT1_SECRET # Project 1
- team_id: team-2
success_callback: ["langfuse"]
failure_callback: ["langfuse"]
langfuse_public_key: os.environ/LANGFUSE_PROJECT2_PUBLIC # Project 2
langfuse_secret: os.environ/LANGFUSE_PROJECT2_SECRET # Project 2
langfuse_host: https://us.cloud.langfuse.com

View file

@ -96,7 +96,7 @@ class AnthropicPassthroughLoggingHandler:
kwargs["response_cost"] = response_cost
kwargs["model"] = model
# Make standard logging object for Vertex AI
# Make standard logging object for Anthropic
standard_logging_object = get_standard_logging_object_payload(
kwargs=kwargs,
init_response_obj=litellm_model_response,

View file

@ -57,8 +57,14 @@ class VertexPassthroughLoggingHandler:
encoding=None,
)
)
logging_obj.model = litellm_model_response.model or model
logging_obj.model_call_details["model"] = logging_obj.model
kwargs = VertexPassthroughLoggingHandler._create_vertex_response_logging_payload_for_generate_content(
litellm_model_response=litellm_model_response,
model=model,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
logging_obj=logging_obj,
)
return {
"result": litellm_model_response,
@ -147,10 +153,14 @@ class VertexPassthroughLoggingHandler:
verbose_proxy_logger.error(
"Unable to build complete streaming response for Vertex passthrough endpoint, not logging..."
)
return {
"result": None,
"kwargs": kwargs,
}
kwargs = VertexPassthroughLoggingHandler._create_vertex_response_logging_payload_for_generate_content(
litellm_model_response=complete_streaming_response,
model=model,
kwargs=kwargs,
start_time=start_time,
end_time=end_time,
logging_obj=litellm_logging_obj,
)
return {
"result": complete_streaming_response,
@ -195,3 +205,47 @@ class VertexPassthroughLoggingHandler:
if match:
return match.group(1)
return "unknown"
@staticmethod
def _create_vertex_response_logging_payload_for_generate_content(
litellm_model_response: Union[
litellm.ModelResponse, litellm.TextCompletionResponse
],
model: str,
kwargs: dict,
start_time: datetime,
end_time: datetime,
logging_obj: LiteLLMLoggingObj,
):
"""
Create the standard logging object for Vertex passthrough generateContent (streaming and non-streaming)
"""
response_cost = litellm.completion_cost(
completion_response=litellm_model_response,
model=model,
)
kwargs["response_cost"] = response_cost
kwargs["model"] = model
# Make standard logging object for Vertex AI
standard_logging_object = get_standard_logging_object_payload(
kwargs=kwargs,
init_response_obj=litellm_model_response,
start_time=start_time,
end_time=end_time,
logging_obj=logging_obj,
status="success",
)
# pretty print standard logging object
verbose_proxy_logger.debug(
"standard_logging_object= %s", json.dumps(standard_logging_object, indent=4)
)
kwargs["standard_logging_object"] = standard_logging_object
# set litellm_call_id to logging response object
litellm_model_response.id = logging_obj.litellm_call_id
logging_obj.model = litellm_model_response.model or model
logging_obj.model_call_details["model"] = logging_obj.model
return kwargs

View file

@ -22,6 +22,7 @@ import litellm
from litellm._logging import verbose_proxy_logger
from litellm.integrations.custom_logger import CustomLogger
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.custom_httpx.http_handler import get_async_httpx_client
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
ModelResponseIterator,
)
@ -35,8 +36,9 @@ from litellm.proxy._types import (
)
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.custom_http import httpxSpecialProvider
from .streaming_handler import chunk_processor
from .streaming_handler import PassThroughStreamingHandler
from .success_handler import PassThroughEndpointLogging
from .types import EndpointType, PassthroughStandardLoggingPayload
@ -363,8 +365,11 @@ async def pass_through_request( # noqa: PLR0915
data=_parsed_body,
call_type="pass_through_endpoint",
)
async_client = httpx.AsyncClient(timeout=600)
async_client_obj = get_async_httpx_client(
llm_provider=httpxSpecialProvider.PassThroughEndpoint,
params={"timeout": 600},
)
async_client = async_client_obj.client
litellm_call_id = str(uuid.uuid4())
@ -448,7 +453,7 @@ async def pass_through_request( # noqa: PLR0915
)
return StreamingResponse(
chunk_processor(
PassThroughStreamingHandler.chunk_processor(
response=response,
request_body=_parsed_body,
litellm_logging_obj=logging_obj,
@ -491,7 +496,7 @@ async def pass_through_request( # noqa: PLR0915
)
return StreamingResponse(
chunk_processor(
PassThroughStreamingHandler.chunk_processor(
response=response,
request_body=_parsed_body,
litellm_logging_obj=logging_obj,

View file

@ -33,93 +33,72 @@ from .success_handler import PassThroughEndpointLogging
from .types import EndpointType
async def chunk_processor(
response: httpx.Response,
request_body: Optional[dict],
litellm_logging_obj: LiteLLMLoggingObj,
endpoint_type: EndpointType,
start_time: datetime,
passthrough_success_handler_obj: PassThroughEndpointLogging,
url_route: str,
):
"""
- Yields chunks from the response
- Collect non-empty chunks for post-processing (logging)
"""
collected_chunks: List[str] = [] # List to store all chunks
try:
async for chunk in response.aiter_lines():
verbose_proxy_logger.debug(f"Processing chunk: {chunk}")
if not chunk:
continue
class PassThroughStreamingHandler:
# Handle SSE format - pass through the raw SSE format
if isinstance(chunk, bytes):
chunk = chunk.decode("utf-8")
@staticmethod
async def chunk_processor(
response: httpx.Response,
request_body: Optional[dict],
litellm_logging_obj: LiteLLMLoggingObj,
endpoint_type: EndpointType,
start_time: datetime,
passthrough_success_handler_obj: PassThroughEndpointLogging,
url_route: str,
):
"""
- Yields chunks from the response
- Collect non-empty chunks for post-processing (logging)
"""
try:
raw_bytes: List[bytes] = []
async for chunk in response.aiter_bytes():
raw_bytes.append(chunk)
yield chunk
# Store the chunk for post-processing
if chunk.strip(): # Only store non-empty chunks
collected_chunks.append(chunk)
yield f"{chunk}\n"
# After all chunks are processed, handle post-processing
end_time = datetime.now()
# After all chunks are processed, handle post-processing
end_time = datetime.now()
await PassThroughStreamingHandler._route_streaming_logging_to_handler(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body or {},
endpoint_type=endpoint_type,
start_time=start_time,
raw_bytes=raw_bytes,
end_time=end_time,
)
except Exception as e:
verbose_proxy_logger.error(f"Error in chunk_processor: {str(e)}")
raise
await _route_streaming_logging_to_handler(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body or {},
endpoint_type=endpoint_type,
start_time=start_time,
all_chunks=collected_chunks,
end_time=end_time,
@staticmethod
async def _route_streaming_logging_to_handler(
litellm_logging_obj: LiteLLMLoggingObj,
passthrough_success_handler_obj: PassThroughEndpointLogging,
url_route: str,
request_body: dict,
endpoint_type: EndpointType,
start_time: datetime,
raw_bytes: List[bytes],
end_time: datetime,
):
"""
Route the logging for the collected chunks to the appropriate handler
Supported endpoint types:
- Anthropic
- Vertex AI
"""
all_chunks = PassThroughStreamingHandler._convert_raw_bytes_to_str_lines(
raw_bytes
)
except Exception as e:
verbose_proxy_logger.error(f"Error in chunk_processor: {str(e)}")
raise
async def _route_streaming_logging_to_handler(
litellm_logging_obj: LiteLLMLoggingObj,
passthrough_success_handler_obj: PassThroughEndpointLogging,
url_route: str,
request_body: dict,
endpoint_type: EndpointType,
start_time: datetime,
all_chunks: List[str],
end_time: datetime,
):
"""
Route the logging for the collected chunks to the appropriate handler
Supported endpoint types:
- Anthropic
- Vertex AI
"""
standard_logging_response_object: Optional[
PassThroughEndpointLoggingResultValues
] = None
kwargs: dict = {}
if endpoint_type == EndpointType.ANTHROPIC:
anthropic_passthrough_logging_handler_result = AnthropicPassthroughLoggingHandler._handle_logging_anthropic_collected_chunks(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body,
endpoint_type=endpoint_type,
start_time=start_time,
all_chunks=all_chunks,
end_time=end_time,
)
standard_logging_response_object = anthropic_passthrough_logging_handler_result[
"result"
]
kwargs = anthropic_passthrough_logging_handler_result["kwargs"]
elif endpoint_type == EndpointType.VERTEX_AI:
vertex_passthrough_logging_handler_result = (
VertexPassthroughLoggingHandler._handle_logging_vertex_collected_chunks(
standard_logging_response_object: Optional[
PassThroughEndpointLoggingResultValues
] = None
kwargs: dict = {}
if endpoint_type == EndpointType.ANTHROPIC:
anthropic_passthrough_logging_handler_result = AnthropicPassthroughLoggingHandler._handle_logging_anthropic_collected_chunks(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
@ -129,29 +108,64 @@ async def _route_streaming_logging_to_handler(
all_chunks=all_chunks,
end_time=end_time,
)
)
standard_logging_response_object = vertex_passthrough_logging_handler_result[
"result"
]
kwargs = vertex_passthrough_logging_handler_result["kwargs"]
standard_logging_response_object = anthropic_passthrough_logging_handler_result[
"result"
]
kwargs = anthropic_passthrough_logging_handler_result["kwargs"]
elif endpoint_type == EndpointType.VERTEX_AI:
vertex_passthrough_logging_handler_result = (
VertexPassthroughLoggingHandler._handle_logging_vertex_collected_chunks(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body,
endpoint_type=endpoint_type,
start_time=start_time,
all_chunks=all_chunks,
end_time=end_time,
)
)
standard_logging_response_object = vertex_passthrough_logging_handler_result[
"result"
]
kwargs = vertex_passthrough_logging_handler_result["kwargs"]
if standard_logging_response_object is None:
standard_logging_response_object = StandardPassThroughResponseObject(
response=f"cannot parse chunks to standard response object. Chunks={all_chunks}"
if standard_logging_response_object is None:
standard_logging_response_object = StandardPassThroughResponseObject(
response=f"cannot parse chunks to standard response object. Chunks={all_chunks}"
)
threading.Thread(
target=litellm_logging_obj.success_handler,
args=(
standard_logging_response_object,
start_time,
end_time,
False,
),
).start()
await litellm_logging_obj.async_success_handler(
result=standard_logging_response_object,
start_time=start_time,
end_time=end_time,
cache_hit=False,
**kwargs,
)
threading.Thread(
target=litellm_logging_obj.success_handler,
args=(
standard_logging_response_object,
start_time,
end_time,
False,
),
).start()
await litellm_logging_obj.async_success_handler(
result=standard_logging_response_object,
start_time=start_time,
end_time=end_time,
cache_hit=False,
**kwargs,
)
@staticmethod
def _convert_raw_bytes_to_str_lines(raw_bytes: List[bytes]) -> List[str]:
"""
Converts a list of raw bytes into a list of string lines, similar to aiter_lines()
Args:
raw_bytes: List of bytes chunks from aiter.bytes()
Returns:
List of string lines, with each line being a complete data: {} chunk
"""
# Combine all bytes and decode to string
combined_str = b"".join(raw_bytes).decode("utf-8")
# Split by newlines and filter out empty lines
lines = [line.strip() for line in combined_str.split("\n") if line.strip()]
return lines

View file

@ -119,7 +119,6 @@ async def vertex_proxy_route(
endpoint: str,
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
encoded_endpoint = httpx.URL(endpoint).path
@ -127,6 +126,11 @@ async def vertex_proxy_route(
verbose_proxy_logger.debug("requested endpoint %s", endpoint)
headers: dict = {}
api_key_to_use = get_litellm_virtual_key(request=request)
user_api_key_dict = await user_api_key_auth(
request=request,
api_key=api_key_to_use,
)
vertex_project = None
vertex_location = None
@ -214,3 +218,18 @@ async def vertex_proxy_route(
)
return received_value
def get_litellm_virtual_key(request: Request) -> str:
"""
Extract and format API key from request headers.
Prioritizes x-litellm-api-key over Authorization header.
Vertex JS SDK uses `Authorization` header, we use `x-litellm-api-key` to pass litellm virtual key
"""
litellm_api_key = request.headers.get("x-litellm-api-key")
if litellm_api_key:
return f"Bearer {litellm_api_key}"
return request.headers.get("Authorization", "")

View file

@ -31,8 +31,8 @@ from litellm.llms.custom_httpx.http_handler import (
_get_httpx_client,
get_async_httpx_client,
)
from litellm.llms.custom_httpx.types import httpxSpecialProvider
from litellm.proxy._types import KeyManagementSystem
from litellm.types.llms.custom_http import httpxSpecialProvider
class AWSSecretsManagerV2(BaseAWSLLM):

View file

@ -0,0 +1,20 @@
from enum import Enum
import litellm
class httpxSpecialProvider(str, Enum):
"""
Httpx Clients can be created for these litellm internal providers
Example:
- langsmith logging would need a custom async httpx client
- pass through endpoint would need a custom async httpx client
"""
LoggingCallback = "logging_callback"
GuardrailCallback = "guardrail_callback"
Caching = "caching"
Oauth2Check = "oauth2_check"
SecretManager = "secret_manager"
PassThroughEndpoint = "pass_through_endpoint"

View file

@ -5,9 +5,19 @@ ALLOWED_FILES = [
# local files
"../../litellm/__init__.py",
"../../litellm/llms/custom_httpx/http_handler.py",
"../../litellm/router_utils/client_initalization_utils.py",
"../../litellm/llms/custom_httpx/http_handler.py",
"../../litellm/llms/huggingface_restapi.py",
"../../litellm/llms/base.py",
"../../litellm/llms/custom_httpx/httpx_handler.py",
# when running on ci/cd
"./litellm/__init__.py",
"./litellm/llms/custom_httpx/http_handler.py",
"./litellm/router_utils/client_initalization_utils.py",
"./litellm/llms/custom_httpx/http_handler.py",
"./litellm/llms/huggingface_restapi.py",
"./litellm/llms/base.py",
"./litellm/llms/custom_httpx/httpx_handler.py",
]
warning_msg = "this is a serious violation that can impact latency. Creating Async clients per request can add +500ms per request"
@ -43,6 +53,19 @@ def check_for_async_http_handler(file_path):
raise ValueError(
f"found violation in file {file_path} line: {node.lineno}. Please use `get_async_httpx_client` instead. {warning_msg}"
)
# Check for attribute calls like httpx.AsyncClient()
elif isinstance(node.func, ast.Attribute):
full_name = ""
current = node.func
while isinstance(current, ast.Attribute):
full_name = "." + current.attr + full_name
current = current.value
if isinstance(current, ast.Name):
full_name = current.id + full_name
if full_name.lower() in [name.lower() for name in target_names]:
raise ValueError(
f"found violation in file {file_path} line: {node.lineno}. Please use `get_async_httpx_client` instead. {warning_msg}"
)
return violations

View file

@ -0,0 +1,23 @@
// const { GoogleGenerativeAI } = require("@google/generative-ai");
// const genAI = new GoogleGenerativeAI("sk-1234");
// const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
// const prompt = "Explain how AI works in 2 pages";
// async function run() {
// try {
// const result = await model.generateContentStream(prompt, { baseUrl: "http://localhost:4000/gemini" });
// const response = await result.response;
// console.log(response.text());
// for await (const chunk of result.stream) {
// const chunkText = chunk.text();
// console.log(chunkText);
// process.stdout.write(chunkText);
// }
// } catch (error) {
// console.error("Error:", error);
// }
// }
// run();

View file

@ -0,0 +1,68 @@
const { VertexAI, RequestOptions } = require('@google-cloud/vertexai');
// Import fetch if the SDK uses it
const originalFetch = global.fetch || require('node-fetch');
// Monkey-patch the fetch used internally
global.fetch = async function patchedFetch(url, options) {
// Modify the URL to use HTTP instead of HTTPS
if (url.startsWith('https://localhost:4000')) {
url = url.replace('https://', 'http://');
}
console.log('Patched fetch sending request to:', url);
return originalFetch(url, options);
};
const vertexAI = new VertexAI({
project: 'adroit-crow-413218',
location: 'us-central1',
apiEndpoint: "localhost:4000/vertex-ai"
});
// Use customHeaders in RequestOptions
const requestOptions = {
customHeaders: new Headers({
"x-litellm-api-key": "sk-1234"
})
};
const generativeModel = vertexAI.getGenerativeModel(
{ model: 'gemini-1.0-pro' },
requestOptions
);
async function streamingResponse() {
try {
const request = {
contents: [{role: 'user', parts: [{text: 'How are you doing today tell me your name?'}]}],
};
const streamingResult = await generativeModel.generateContentStream(request);
for await (const item of streamingResult.stream) {
console.log('stream chunk: ', JSON.stringify(item));
}
const aggregatedResponse = await streamingResult.response;
console.log('aggregated response: ', JSON.stringify(aggregatedResponse));
} catch (error) {
console.error('Error:', error);
}
}
async function nonStreamingResponse() {
try {
const request = {
contents: [{role: 'user', parts: [{text: 'How are you doing today tell me your name?'}]}],
};
const response = await generativeModel.generateContent(request);
console.log('non streaming response: ', JSON.stringify(response));
} catch (error) {
console.error('Error:', error);
}
}
streamingResponse();
nonStreamingResponse();

View file

@ -0,0 +1,114 @@
const { VertexAI, RequestOptions } = require('@google-cloud/vertexai');
const fs = require('fs');
const path = require('path');
const os = require('os');
const { writeFileSync } = require('fs');
// Import fetch if the SDK uses it
const originalFetch = global.fetch || require('node-fetch');
// Monkey-patch the fetch used internally
global.fetch = async function patchedFetch(url, options) {
// Modify the URL to use HTTP instead of HTTPS
if (url.startsWith('https://localhost:4000')) {
url = url.replace('https://', 'http://');
}
console.log('Patched fetch sending request to:', url);
return originalFetch(url, options);
};
function loadVertexAiCredentials() {
console.log("loading vertex ai credentials");
const filepath = path.dirname(__filename);
const vertexKeyPath = path.join(filepath, "vertex_key.json");
// Initialize default empty service account data
let serviceAccountKeyData = {};
// Try to read existing vertex_key.json
try {
const content = fs.readFileSync(vertexKeyPath, 'utf8');
if (content && content.trim()) {
serviceAccountKeyData = JSON.parse(content);
}
} catch (error) {
// File doesn't exist or is invalid, continue with empty object
}
// Update with environment variables
const privateKeyId = process.env.VERTEX_AI_PRIVATE_KEY_ID || "";
const privateKey = (process.env.VERTEX_AI_PRIVATE_KEY || "").replace(/\\n/g, "\n");
serviceAccountKeyData.private_key_id = privateKeyId;
serviceAccountKeyData.private_key = privateKey;
// Create temporary file
const tempFilePath = path.join(os.tmpdir(), `vertex-credentials-${Date.now()}.json`);
writeFileSync(tempFilePath, JSON.stringify(serviceAccountKeyData, null, 2));
// Set environment variable
process.env.GOOGLE_APPLICATION_CREDENTIALS = tempFilePath;
}
// Run credential loading before tests
beforeAll(() => {
loadVertexAiCredentials();
});
describe('Vertex AI Tests', () => {
test('should successfully generate content from Vertex AI', async () => {
const vertexAI = new VertexAI({
project: 'adroit-crow-413218',
location: 'us-central1',
apiEndpoint: "localhost:4000/vertex-ai"
});
const customHeaders = new Headers({
"x-litellm-api-key": "sk-1234"
});
const requestOptions = {
customHeaders: customHeaders
};
const generativeModel = vertexAI.getGenerativeModel(
{ model: 'gemini-1.0-pro' },
requestOptions
);
const request = {
contents: [{role: 'user', parts: [{text: 'How are you doing today tell me your name?'}]}],
};
const streamingResult = await generativeModel.generateContentStream(request);
// Add some assertions
expect(streamingResult).toBeDefined();
for await (const item of streamingResult.stream) {
console.log('stream chunk:', JSON.stringify(item));
expect(item).toBeDefined();
}
const aggregatedResponse = await streamingResult.response;
console.log('aggregated response:', JSON.stringify(aggregatedResponse));
expect(aggregatedResponse).toBeDefined();
});
test('should successfully generate non-streaming content from Vertex AI', async () => {
const vertexAI = new VertexAI({project: 'adroit-crow-413218', location: 'us-central1', apiEndpoint: "localhost:4000/vertex-ai"});
const customHeaders = new Headers({"x-litellm-api-key": "sk-1234"});
const requestOptions = {customHeaders: customHeaders};
const generativeModel = vertexAI.getGenerativeModel({model: 'gemini-1.0-pro'}, requestOptions);
const request = {contents: [{role: 'user', parts: [{text: 'What is 2+2?'}]}]};
const result = await generativeModel.generateContent(request);
expect(result).toBeDefined();
expect(result.response).toBeDefined();
console.log('non-streaming response:', JSON.stringify(result.response));
});
});

View file

@ -0,0 +1,118 @@
import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock, Mock, patch, MagicMock
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import httpx
import pytest
import litellm
from typing import AsyncGenerator
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.proxy.pass_through_endpoints.types import EndpointType
from litellm.proxy.pass_through_endpoints.success_handler import (
PassThroughEndpointLogging,
)
from litellm.proxy.pass_through_endpoints.streaming_handler import (
PassThroughStreamingHandler,
)
# Helper function to mock async iteration
async def aiter_mock(iterable):
for item in iterable:
yield item
@pytest.mark.asyncio
@pytest.mark.parametrize(
"endpoint_type,url_route",
[
(
EndpointType.VERTEX_AI,
"v1/projects/adroit-crow-413218/locations/us-central1/publishers/google/models/gemini-1.0-pro:generateContent",
),
(EndpointType.ANTHROPIC, "/v1/messages"),
],
)
async def test_chunk_processor_yields_raw_bytes(endpoint_type, url_route):
"""
Test that the chunk_processor yields raw bytes
This is CRITICAL for pass throughs streaming with Vertex AI and Anthropic
"""
# Mock inputs
response = AsyncMock(spec=httpx.Response)
raw_chunks = [
b'{"id": "1", "content": "Hello"}',
b'{"id": "2", "content": "World"}',
b'\n\ndata: {"id": "3"}', # Testing different byte formats
]
# Mock aiter_bytes to return an async generator
async def mock_aiter_bytes():
for chunk in raw_chunks:
yield chunk
response.aiter_bytes = mock_aiter_bytes
request_body = {"key": "value"}
litellm_logging_obj = MagicMock()
start_time = datetime.now()
passthrough_success_handler_obj = MagicMock()
# Capture yielded chunks and perform detailed assertions
received_chunks = []
async for chunk in PassThroughStreamingHandler.chunk_processor(
response=response,
request_body=request_body,
litellm_logging_obj=litellm_logging_obj,
endpoint_type=endpoint_type,
start_time=start_time,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
):
# Assert each chunk is bytes
assert isinstance(chunk, bytes), f"Chunk should be bytes, got {type(chunk)}"
# Assert no decoding/encoding occurred (chunk should be exactly as input)
assert (
chunk in raw_chunks
), f"Chunk {chunk} was modified during processing. For pass throughs streaming, chunks should be raw bytes"
received_chunks.append(chunk)
# Assert all chunks were processed
assert len(received_chunks) == len(raw_chunks), "Not all chunks were processed"
# collected chunks all together
assert b"".join(received_chunks) == b"".join(
raw_chunks
), "Collected chunks do not match raw chunks"
def test_convert_raw_bytes_to_str_lines():
"""
Test that the _convert_raw_bytes_to_str_lines method correctly converts raw bytes to a list of strings
"""
# Test case 1: Single chunk
raw_bytes = [b'data: {"content": "Hello"}\n']
result = PassThroughStreamingHandler._convert_raw_bytes_to_str_lines(raw_bytes)
assert result == ['data: {"content": "Hello"}']
# Test case 2: Multiple chunks
raw_bytes = [b'data: {"content": "Hello"}\n', b'data: {"content": "World"}\n']
result = PassThroughStreamingHandler._convert_raw_bytes_to_str_lines(raw_bytes)
assert result == ['data: {"content": "Hello"}', 'data: {"content": "World"}']
# Test case 3: Empty input
raw_bytes = []
result = PassThroughStreamingHandler._convert_raw_bytes_to_str_lines(raw_bytes)
assert result == []
# Test case 4: Chunks with empty lines
raw_bytes = [b'data: {"content": "Hello"}\n\n', b'\ndata: {"content": "World"}\n']
result = PassThroughStreamingHandler._convert_raw_bytes_to_str_lines(raw_bytes)
assert result == ['data: {"content": "Hello"}', 'data: {"content": "World"}']

View file

@ -0,0 +1,84 @@
import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock, Mock, patch
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import httpx
import pytest
import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.proxy.vertex_ai_endpoints.vertex_endpoints import (
get_litellm_virtual_key,
vertex_proxy_route,
)
@pytest.mark.asyncio
async def test_get_litellm_virtual_key():
"""
Test that the get_litellm_virtual_key function correctly handles the API key authentication
"""
# Test with x-litellm-api-key
mock_request = Mock()
mock_request.headers = {"x-litellm-api-key": "test-key-123"}
result = get_litellm_virtual_key(mock_request)
assert result == "Bearer test-key-123"
# Test with Authorization header
mock_request.headers = {"Authorization": "Bearer auth-key-456"}
result = get_litellm_virtual_key(mock_request)
assert result == "Bearer auth-key-456"
# Test with both headers (x-litellm-api-key should take precedence)
mock_request.headers = {
"x-litellm-api-key": "test-key-123",
"Authorization": "Bearer auth-key-456",
}
result = get_litellm_virtual_key(mock_request)
assert result == "Bearer test-key-123"
@pytest.mark.asyncio
async def test_vertex_proxy_route_api_key_auth():
"""
Critical
This is how Vertex AI JS SDK will Auth to Litellm Proxy
"""
# Mock dependencies
mock_request = Mock()
mock_request.headers = {"x-litellm-api-key": "test-key-123"}
mock_request.method = "POST"
mock_response = Mock()
with patch(
"litellm.proxy.vertex_ai_endpoints.vertex_endpoints.user_api_key_auth"
) as mock_auth:
mock_auth.return_value = {"api_key": "test-key-123"}
with patch(
"litellm.proxy.vertex_ai_endpoints.vertex_endpoints.create_pass_through_route"
) as mock_pass_through:
mock_pass_through.return_value = AsyncMock(
return_value={"status": "success"}
)
# Call the function
result = await vertex_proxy_route(
endpoint="v1/projects/test-project/locations/us-central1/publishers/google/models/gemini-1.5-pro:generateContent",
request=mock_request,
fastapi_response=mock_response,
)
# Verify user_api_key_auth was called with the correct Bearer token
mock_auth.assert_called_once()
call_args = mock_auth.call_args[1]
assert call_args["api_key"] == "Bearer test-key-123"

View file

@ -39,13 +39,12 @@ async def list_organization(session, i):
response_json = await response.json()
print(f"Response {i} (Status code: {status}):")
print(response_json)
print()
if status != 200:
raise Exception(f"Request {i} did not return a 200 status code: {status}")
return await response.json()
return response_json
@pytest.mark.asyncio

View file

@ -61,6 +61,7 @@ async def chat_completion(session, key, model="azure-gpt-3.5", request_metadata=
raise Exception(f"Request did not return a 200 status code: {status}")
@pytest.mark.skip(reason="flaky test - covered by simpler unit testing.")
@pytest.mark.asyncio
@pytest.mark.flaky(retries=12, delay=2)
async def test_aaateam_logging():
@ -94,9 +95,12 @@ async def test_aaateam_logging():
# Test - if the logs were sent to the correct team on langfuse
import langfuse
print(f"langfuse_public_key: {os.getenv('LANGFUSE_PROJECT1_PUBLIC')}")
print(f"langfuse_secret_key: {os.getenv('LANGFUSE_HOST')}")
langfuse_client = langfuse.Langfuse(
public_key=os.getenv("LANGFUSE_PROJECT1_PUBLIC"),
secret_key=os.getenv("LANGFUSE_PROJECT1_SECRET"),
host="https://us.cloud.langfuse.com",
)
await asyncio.sleep(30)
@ -177,6 +181,7 @@ async def test_team_2logging():
langfuse_client_1 = langfuse.Langfuse(
public_key=os.getenv("LANGFUSE_PROJECT1_PUBLIC"),
secret_key=os.getenv("LANGFUSE_PROJECT1_SECRET"),
host="https://us.cloud.langfuse.com",
)
generations_team_1 = langfuse_client_1.get_generations(

View file

@ -1852,9 +1852,9 @@
}
},
"node_modules/cross-spawn": {
"version": "7.0.3",
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
"integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
"version": "7.0.6",
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz",
"integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==",
"dependencies": {
"path-key": "^3.1.0",
"shebang-command": "^2.0.0",