forked from phoenix/litellm-mirror
Merge pull request #4586 from simonsanvil/main
Fix bugs with watsonx embedding/async endpoints
This commit is contained in:
commit
40a045cb72
4 changed files with 272 additions and 181 deletions
|
@ -1,5 +1,7 @@
|
|||
from enum import Enum
|
||||
import json, types, time # noqa: E401
|
||||
import asyncio
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
from contextlib import asynccontextmanager, contextmanager
|
||||
from typing import (
|
||||
Callable,
|
||||
|
@ -285,7 +287,10 @@ class IBMWatsonXAI(BaseLLM):
|
|||
)
|
||||
|
||||
def _get_api_params(
|
||||
self, params: dict, print_verbose: Optional[Callable] = None
|
||||
self,
|
||||
params: dict,
|
||||
print_verbose: Optional[Callable] = None,
|
||||
generate_token: Optional[bool] = True,
|
||||
) -> dict:
|
||||
"""
|
||||
Find watsonx.ai credentials in the params or environment variables and return the headers for authentication.
|
||||
|
@ -365,7 +370,7 @@ class IBMWatsonXAI(BaseLLM):
|
|||
status_code=401,
|
||||
message="Error: Watsonx URL not set. Set WX_URL in environment variables or pass in as a parameter.",
|
||||
)
|
||||
if token is None and api_key is not None:
|
||||
if token is None and api_key is not None and generate_token:
|
||||
# generate the auth token
|
||||
if print_verbose is not None:
|
||||
print_verbose("Generating IAM token for Watsonx.ai")
|
||||
|
@ -393,6 +398,35 @@ class IBMWatsonXAI(BaseLLM):
|
|||
"api_version": api_version,
|
||||
}
|
||||
|
||||
def _process_text_gen_response(
|
||||
self, json_resp: dict, model_response: Union[ModelResponse, None] = None
|
||||
) -> ModelResponse:
|
||||
if "results" not in json_resp:
|
||||
raise WatsonXAIError(
|
||||
status_code=500,
|
||||
message=f"Error: Invalid response from Watsonx.ai API: {json_resp}",
|
||||
)
|
||||
if model_response is None:
|
||||
model_response = ModelResponse(model=json_resp.get("model_id", None))
|
||||
generated_text = json_resp["results"][0]["generated_text"]
|
||||
prompt_tokens = json_resp["results"][0]["input_token_count"]
|
||||
completion_tokens = json_resp["results"][0]["generated_token_count"]
|
||||
model_response["choices"][0]["message"]["content"] = generated_text
|
||||
model_response["finish_reason"] = json_resp["results"][0]["stop_reason"]
|
||||
if json_resp.get("created_at"):
|
||||
model_response["created"] = datetime.fromisoformat(
|
||||
json_resp["created_at"]
|
||||
).timestamp()
|
||||
else:
|
||||
model_response["created"] = int(time.time())
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -406,7 +440,7 @@ class IBMWatsonXAI(BaseLLM):
|
|||
acompletion=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
timeout=None,
|
||||
timeout=None
|
||||
):
|
||||
"""
|
||||
Send a text generation request to the IBM Watsonx.ai API.
|
||||
|
@ -426,27 +460,7 @@ class IBMWatsonXAI(BaseLLM):
|
|||
prompt = convert_messages_to_prompt(
|
||||
model, messages, provider, custom_prompt_dict
|
||||
)
|
||||
|
||||
def process_text_gen_response(json_resp: dict) -> ModelResponse:
|
||||
if "results" not in json_resp:
|
||||
raise WatsonXAIError(
|
||||
status_code=500,
|
||||
message=f"Error: Invalid response from Watsonx.ai API: {json_resp}",
|
||||
)
|
||||
generated_text = json_resp["results"][0]["generated_text"]
|
||||
prompt_tokens = json_resp["results"][0]["input_token_count"]
|
||||
completion_tokens = json_resp["results"][0]["generated_token_count"]
|
||||
model_response["choices"][0]["message"]["content"] = generated_text
|
||||
model_response["finish_reason"] = json_resp["results"][0]["stop_reason"]
|
||||
model_response["created"] = int(time.time())
|
||||
model_response["model"] = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
model_response["model"] = model
|
||||
|
||||
def process_stream_response(
|
||||
stream_resp: Union[Iterator[str], AsyncIterator],
|
||||
|
@ -470,7 +484,7 @@ class IBMWatsonXAI(BaseLLM):
|
|||
) as resp:
|
||||
json_resp = resp.json()
|
||||
|
||||
return process_text_gen_response(json_resp)
|
||||
return self._process_text_gen_response(json_resp, model_response)
|
||||
|
||||
async def handle_text_request_async(request_params: dict) -> ModelResponse:
|
||||
async with self.request_manager.async_request(
|
||||
|
@ -479,7 +493,7 @@ class IBMWatsonXAI(BaseLLM):
|
|||
timeout=timeout,
|
||||
) as resp:
|
||||
json_resp = resp.json()
|
||||
return process_text_gen_response(json_resp)
|
||||
return self._process_text_gen_response(json_resp, model_response)
|
||||
|
||||
def handle_stream_request(request_params: dict) -> litellm.CustomStreamWrapper:
|
||||
# stream the response - generated chunks will be handled
|
||||
|
@ -493,7 +507,9 @@ class IBMWatsonXAI(BaseLLM):
|
|||
streamwrapper = process_stream_response(resp.iter_lines())
|
||||
return streamwrapper
|
||||
|
||||
async def handle_stream_request_async(request_params: dict) -> litellm.CustomStreamWrapper:
|
||||
async def handle_stream_request_async(
|
||||
request_params: dict,
|
||||
) -> litellm.CustomStreamWrapper:
|
||||
# stream the response - generated chunks will be handled
|
||||
# by litellm.utils.CustomStreamWrapper.handle_watsonx_stream
|
||||
async with self.request_manager.async_request(
|
||||
|
@ -520,7 +536,7 @@ class IBMWatsonXAI(BaseLLM):
|
|||
elif stream:
|
||||
# streaming text generation
|
||||
return handle_stream_request(req_params)
|
||||
elif (acompletion is True):
|
||||
elif acompletion is True:
|
||||
# async text generation
|
||||
return handle_text_request_async(req_params)
|
||||
else:
|
||||
|
@ -531,6 +547,29 @@ class IBMWatsonXAI(BaseLLM):
|
|||
except Exception as e:
|
||||
raise WatsonXAIError(status_code=500, message=str(e))
|
||||
|
||||
def _process_embedding_response(self, json_resp: dict, model_response:Union[ModelResponse,None]=None) -> ModelResponse:
|
||||
if model_response is None:
|
||||
model_response = ModelResponse(model=json_resp.get("model_id", None))
|
||||
results = json_resp.get("results", [])
|
||||
embedding_response = []
|
||||
for idx, result in enumerate(results):
|
||||
embedding_response.append(
|
||||
{
|
||||
"object": "embedding",
|
||||
"index": idx,
|
||||
"embedding": result["embedding"],
|
||||
}
|
||||
)
|
||||
model_response["object"] = "list"
|
||||
model_response["data"] = embedding_response
|
||||
input_tokens = json_resp.get("input_token_count", 0)
|
||||
model_response.usage = Usage(
|
||||
prompt_tokens=input_tokens,
|
||||
completion_tokens=0,
|
||||
total_tokens=input_tokens,
|
||||
)
|
||||
return model_response
|
||||
|
||||
def embedding(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -540,7 +579,8 @@ class IBMWatsonXAI(BaseLLM):
|
|||
model_response=None,
|
||||
optional_params=None,
|
||||
encoding=None,
|
||||
aembedding=None,
|
||||
print_verbose=None,
|
||||
aembedding=None
|
||||
):
|
||||
"""
|
||||
Send a text embedding request to the IBM Watsonx.ai API.
|
||||
|
@ -553,6 +593,8 @@ class IBMWatsonXAI(BaseLLM):
|
|||
if k not in optional_params:
|
||||
optional_params[k] = v
|
||||
|
||||
model_response['model'] = model
|
||||
|
||||
# Load auth variables from environment variables
|
||||
if isinstance(input, str):
|
||||
input = [input]
|
||||
|
@ -584,43 +626,23 @@ class IBMWatsonXAI(BaseLLM):
|
|||
}
|
||||
request_manager = RequestManager(logging_obj)
|
||||
|
||||
def process_embedding_response(json_resp: dict) -> ModelResponse:
|
||||
results = json_resp.get("results", [])
|
||||
embedding_response = []
|
||||
for idx, result in enumerate(results):
|
||||
embedding_response.append(
|
||||
{
|
||||
"object": "embedding",
|
||||
"index": idx,
|
||||
"embedding": result["embedding"],
|
||||
}
|
||||
)
|
||||
model_response["object"] = "list"
|
||||
model_response["data"] = embedding_response
|
||||
model_response["model"] = model
|
||||
input_tokens = json_resp.get("input_token_count", 0)
|
||||
model_response.usage = Usage(
|
||||
prompt_tokens=input_tokens,
|
||||
completion_tokens=0,
|
||||
total_tokens=input_tokens,
|
||||
)
|
||||
return model_response
|
||||
|
||||
def handle_embedding(request_params: dict) -> ModelResponse:
|
||||
with request_manager.request(request_params, input=input) as resp:
|
||||
json_resp = resp.json()
|
||||
return process_embedding_response(json_resp)
|
||||
return self._process_embedding_response(json_resp, model_response)
|
||||
|
||||
async def handle_aembedding(request_params: dict) -> ModelResponse:
|
||||
async with request_manager.async_request(request_params, input=input) as resp:
|
||||
async with request_manager.async_request(
|
||||
request_params, input=input
|
||||
) as resp:
|
||||
json_resp = resp.json()
|
||||
return process_embedding_response(json_resp)
|
||||
return self._process_embedding_response(json_resp, model_response)
|
||||
|
||||
try:
|
||||
if aembedding is True:
|
||||
return handle_embedding(req_params)
|
||||
else:
|
||||
return handle_aembedding(req_params)
|
||||
else:
|
||||
return handle_embedding(req_params)
|
||||
except WatsonXAIError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
|
@ -664,127 +686,135 @@ class IBMWatsonXAI(BaseLLM):
|
|||
return [res["model_id"] for res in json_resp["resources"]]
|
||||
|
||||
class RequestManager:
|
||||
"""
|
||||
A class to handle sync/async HTTP requests to the IBM Watsonx.ai API.
|
||||
|
||||
Usage:
|
||||
```python
|
||||
request_params = dict(method="POST", url="https://api.example.com", headers={"Authorization" : "Bearer token"}, json={"key": "value"})
|
||||
request_manager = RequestManager(logging_obj=logging_obj)
|
||||
with request_manager.request(request_params) as resp:
|
||||
...
|
||||
# or
|
||||
async with request_manager.async_request(request_params) as resp:
|
||||
...
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, logging_obj=None):
|
||||
self.logging_obj = logging_obj
|
||||
|
||||
def pre_call(
|
||||
self,
|
||||
request_params: dict,
|
||||
input: Optional[Any] = None,
|
||||
is_async: Optional[bool] = False,
|
||||
):
|
||||
if self.logging_obj is None:
|
||||
return
|
||||
request_str = (
|
||||
f"response = {'await ' if is_async else ''}{request_params['method']}(\n"
|
||||
f"\turl={request_params['url']},\n"
|
||||
f"\tjson={request_params.get('json')},\n"
|
||||
f")"
|
||||
)
|
||||
self.logging_obj.pre_call(
|
||||
input=input,
|
||||
api_key=request_params["headers"].get("Authorization"),
|
||||
additional_args={
|
||||
"complete_input_dict": request_params.get("json"),
|
||||
"request_str": request_str,
|
||||
},
|
||||
)
|
||||
|
||||
def post_call(self, resp, request_params):
|
||||
if self.logging_obj is None:
|
||||
return
|
||||
self.logging_obj.post_call(
|
||||
input=input,
|
||||
api_key=request_params["headers"].get("Authorization"),
|
||||
original_response=json.dumps(resp.json()),
|
||||
additional_args={
|
||||
"status_code": resp.status_code,
|
||||
"complete_input_dict": request_params.get(
|
||||
"data", request_params.get("json")
|
||||
),
|
||||
},
|
||||
)
|
||||
|
||||
@contextmanager
|
||||
def request(
|
||||
self,
|
||||
request_params: dict,
|
||||
stream: bool = False,
|
||||
input: Optional[Any] = None,
|
||||
timeout=None,
|
||||
) -> Generator[requests.Response, None, None]:
|
||||
"""
|
||||
Returns a context manager that manages the response from the request.
|
||||
if async_ is True, returns an async context manager, otherwise returns a regular context manager.
|
||||
|
||||
Usage:
|
||||
```python
|
||||
request_params = dict(method="POST", url="https://api.example.com", headers={"Authorization" : "Bearer token"}, json={"key": "value"})
|
||||
request_manager = RequestManager(logging_obj=logging_obj)
|
||||
async with request_manager.request(request_params) as resp:
|
||||
...
|
||||
# or
|
||||
with request_manager.async_request(request_params) as resp:
|
||||
...
|
||||
```
|
||||
Returns a context manager that yields the response from the request.
|
||||
"""
|
||||
|
||||
def __init__(self, logging_obj=None):
|
||||
self.logging_obj = logging_obj
|
||||
|
||||
def pre_call(
|
||||
self,
|
||||
request_params: dict,
|
||||
input: Optional[Any] = None,
|
||||
):
|
||||
if self.logging_obj is None:
|
||||
return
|
||||
request_str = (
|
||||
f"response = {request_params['method']}(\n"
|
||||
f"\turl={request_params['url']},\n"
|
||||
f"\tjson={request_params.get('json')},\n"
|
||||
f")"
|
||||
)
|
||||
self.logging_obj.pre_call(
|
||||
input=input,
|
||||
api_key=request_params["headers"].get("Authorization"),
|
||||
additional_args={
|
||||
"complete_input_dict": request_params.get("json"),
|
||||
"request_str": request_str,
|
||||
},
|
||||
)
|
||||
|
||||
def post_call(self, resp, request_params):
|
||||
if self.logging_obj is None:
|
||||
return
|
||||
self.logging_obj.post_call(
|
||||
input=input,
|
||||
api_key=request_params["headers"].get("Authorization"),
|
||||
original_response=json.dumps(resp.json()),
|
||||
additional_args={
|
||||
"status_code": resp.status_code,
|
||||
"complete_input_dict": request_params.get(
|
||||
"data", request_params.get("json")
|
||||
),
|
||||
},
|
||||
)
|
||||
|
||||
@contextmanager
|
||||
def request(
|
||||
self,
|
||||
request_params: dict,
|
||||
stream: bool = False,
|
||||
input: Optional[Any] = None,
|
||||
timeout=None,
|
||||
) -> Generator[requests.Response, None, None]:
|
||||
"""
|
||||
Returns a context manager that yields the response from the request.
|
||||
"""
|
||||
self.pre_call(request_params, input)
|
||||
if timeout:
|
||||
request_params["timeout"] = timeout
|
||||
if stream:
|
||||
request_params["stream"] = stream
|
||||
try:
|
||||
resp = requests.request(**request_params)
|
||||
if not resp.ok:
|
||||
raise WatsonXAIError(
|
||||
status_code=resp.status_code,
|
||||
message=f"Error {resp.status_code} ({resp.reason}): {resp.text}",
|
||||
)
|
||||
yield resp
|
||||
except Exception as e:
|
||||
raise WatsonXAIError(status_code=500, message=str(e))
|
||||
if not stream:
|
||||
self.post_call(resp, request_params)
|
||||
|
||||
@asynccontextmanager
|
||||
async def async_request(
|
||||
self,
|
||||
request_params: dict,
|
||||
stream: bool = False,
|
||||
input: Optional[Any] = None,
|
||||
timeout=None,
|
||||
) -> AsyncGenerator[httpx.Response, None]:
|
||||
self.pre_call(request_params, input)
|
||||
if timeout:
|
||||
request_params["timeout"] = timeout
|
||||
if stream:
|
||||
request_params["stream"] = stream
|
||||
try:
|
||||
# async with AsyncHTTPHandler(timeout=timeout) as client:
|
||||
self.async_handler = AsyncHTTPHandler(
|
||||
timeout=httpx.Timeout(
|
||||
timeout=request_params.pop("timeout", 600.0), connect=5.0
|
||||
),
|
||||
self.pre_call(request_params, input)
|
||||
if timeout:
|
||||
request_params["timeout"] = timeout
|
||||
if stream:
|
||||
request_params["stream"] = stream
|
||||
try:
|
||||
resp = requests.request(**request_params)
|
||||
if not resp.ok:
|
||||
raise WatsonXAIError(
|
||||
status_code=resp.status_code,
|
||||
message=f"Error {resp.status_code} ({resp.reason}): {resp.text}",
|
||||
)
|
||||
# async_handler.client.verify = False
|
||||
if "json" in request_params:
|
||||
request_params["data"] = json.dumps(request_params.pop("json", {}))
|
||||
method = request_params.pop("method")
|
||||
yield resp
|
||||
except Exception as e:
|
||||
raise WatsonXAIError(status_code=500, message=str(e))
|
||||
if not stream:
|
||||
self.post_call(resp, request_params)
|
||||
|
||||
@asynccontextmanager
|
||||
async def async_request(
|
||||
self,
|
||||
request_params: dict,
|
||||
stream: bool = False,
|
||||
input: Optional[Any] = None,
|
||||
timeout=None,
|
||||
) -> AsyncGenerator[httpx.Response, None]:
|
||||
self.pre_call(request_params, input, is_async=True)
|
||||
if timeout:
|
||||
request_params["timeout"] = timeout
|
||||
if stream:
|
||||
request_params["stream"] = stream
|
||||
try:
|
||||
self.async_handler = AsyncHTTPHandler(
|
||||
timeout=httpx.Timeout(
|
||||
timeout=request_params.pop("timeout", 600.0), connect=5.0
|
||||
),
|
||||
)
|
||||
if "json" in request_params:
|
||||
request_params["data"] = json.dumps(request_params.pop("json", {}))
|
||||
method = request_params.pop("method")
|
||||
retries = 0
|
||||
while retries < 3:
|
||||
if method.upper() == "POST":
|
||||
resp = await self.async_handler.post(**request_params)
|
||||
else:
|
||||
resp = await self.async_handler.get(**request_params)
|
||||
if resp.status_code not in [200, 201]:
|
||||
raise WatsonXAIError(
|
||||
status_code=resp.status_code,
|
||||
message=f"Error {resp.status_code} ({resp.reason}): {resp.text}",
|
||||
)
|
||||
yield resp
|
||||
# await async_handler.close()
|
||||
except Exception as e:
|
||||
raise WatsonXAIError(status_code=500, message=str(e))
|
||||
if not stream:
|
||||
self.post_call(resp, request_params)
|
||||
if resp.status_code in [429, 503, 504, 520]:
|
||||
# to handle rate limiting and service unavailable errors
|
||||
# see: ibm_watsonx_ai.foundation_models.inference.base_model_inference.BaseModelInference._send_inference_payload
|
||||
await asyncio.sleep(2**retries)
|
||||
retries += 1
|
||||
else:
|
||||
break
|
||||
if resp.is_error:
|
||||
raise WatsonXAIError(
|
||||
status_code=resp.status_code,
|
||||
message=f"Error {resp.status_code} ({resp.reason}): {resp.text}",
|
||||
)
|
||||
yield resp
|
||||
# await async_handler.close()
|
||||
except Exception as e:
|
||||
raise e
|
||||
raise WatsonXAIError(status_code=500, message=str(e))
|
||||
if not stream:
|
||||
self.post_call(resp, request_params)
|
||||
|
|
|
@ -108,6 +108,7 @@ from .llms.databricks import DatabricksChatCompletion
|
|||
from .llms.huggingface_restapi import Huggingface
|
||||
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
|
||||
from .llms.predibase import PredibaseChatCompletion
|
||||
from .llms.watsonx import IBMWatsonXAI
|
||||
from .llms.prompt_templates.factory import (
|
||||
custom_prompt,
|
||||
function_call_prompt,
|
||||
|
@ -152,6 +153,7 @@ triton_chat_completions = TritonChatCompletion()
|
|||
bedrock_chat_completion = BedrockLLM()
|
||||
bedrock_converse_chat_completion = BedrockConverseLLM()
|
||||
vertex_chat_completion = VertexLLM()
|
||||
watsonxai = IBMWatsonXAI()
|
||||
####### COMPLETION ENDPOINTS ################
|
||||
|
||||
|
||||
|
@ -369,6 +371,7 @@ async def acompletion(
|
|||
or custom_llm_provider == "bedrock"
|
||||
or custom_llm_provider == "databricks"
|
||||
or custom_llm_provider == "clarifai"
|
||||
or custom_llm_provider == "watsonx"
|
||||
or custom_llm_provider in litellm.openai_compatible_providers
|
||||
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
|
@ -2352,7 +2355,7 @@ def completion(
|
|||
response = response
|
||||
elif custom_llm_provider == "watsonx":
|
||||
custom_prompt_dict = custom_prompt_dict or litellm.custom_prompt_dict
|
||||
response = watsonx.IBMWatsonXAI().completion(
|
||||
response = watsonxai.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
|
@ -2364,6 +2367,7 @@ def completion(
|
|||
encoding=encoding,
|
||||
logging_obj=logging,
|
||||
timeout=timeout, # type: ignore
|
||||
acompletion=acompletion,
|
||||
)
|
||||
if (
|
||||
"stream" in optional_params
|
||||
|
@ -3030,6 +3034,7 @@ async def aembedding(*args, **kwargs) -> EmbeddingResponse:
|
|||
or custom_llm_provider == "ollama"
|
||||
or custom_llm_provider == "vertex_ai"
|
||||
or custom_llm_provider == "databricks"
|
||||
or custom_llm_provider == "watsonx"
|
||||
): # currently implemented aiohttp calls for just azure and openai, soon all.
|
||||
# Await normally
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
|
@ -3537,13 +3542,14 @@ def embedding(
|
|||
aembedding=aembedding,
|
||||
)
|
||||
elif custom_llm_provider == "watsonx":
|
||||
response = watsonx.IBMWatsonXAI().embedding(
|
||||
response = watsonxai.embedding(
|
||||
model=model,
|
||||
input=input,
|
||||
encoding=encoding,
|
||||
logging_obj=logging,
|
||||
optional_params=optional_params,
|
||||
model_response=EmbeddingResponse(),
|
||||
aembedding=aembedding,
|
||||
)
|
||||
else:
|
||||
args = locals()
|
||||
|
|
|
@ -11,6 +11,7 @@ sys.path.insert(
|
|||
) # Adds the parent directory to the system path
|
||||
import litellm
|
||||
from litellm import embedding, completion, completion_cost
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
litellm.set_verbose = False
|
||||
|
||||
|
@ -484,14 +485,67 @@ def test_mistral_embeddings():
|
|||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="local test")
|
||||
def test_watsonx_embeddings():
|
||||
|
||||
def mock_wx_embed_request(method:str, url:str, **kwargs):
|
||||
mock_response = MagicMock()
|
||||
mock_response.status_code = 200
|
||||
mock_response.headers = {"Content-Type": "application/json"}
|
||||
mock_response.json.return_value = {
|
||||
"model_id": "ibm/slate-30m-english-rtrvr",
|
||||
"created_at": "2024-01-01T00:00:00.00Z",
|
||||
"results": [ {"embedding": [0.0]*254} ],
|
||||
"input_token_count": 8
|
||||
}
|
||||
return mock_response
|
||||
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
response = litellm.embedding(
|
||||
model="watsonx/ibm/slate-30m-english-rtrvr",
|
||||
input=["good morning from litellm"],
|
||||
)
|
||||
with patch("requests.request", side_effect=mock_wx_embed_request):
|
||||
response = litellm.embedding(
|
||||
model="watsonx/ibm/slate-30m-english-rtrvr",
|
||||
input=["good morning from litellm"],
|
||||
token="secret-token"
|
||||
)
|
||||
print(f"response: {response}")
|
||||
assert isinstance(response.usage, litellm.Usage)
|
||||
except litellm.RateLimitError as e:
|
||||
pass
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_watsonx_aembeddings():
|
||||
|
||||
def mock_async_client(*args, **kwargs):
|
||||
|
||||
mocked_client = MagicMock()
|
||||
|
||||
async def mock_send(request, *args, stream: bool = False, **kwags):
|
||||
mock_response = MagicMock()
|
||||
mock_response.status_code = 200
|
||||
mock_response.headers = {"Content-Type": "application/json"}
|
||||
mock_response.json.return_value = {
|
||||
"model_id": "ibm/slate-30m-english-rtrvr",
|
||||
"created_at": "2024-01-01T00:00:00.00Z",
|
||||
"results": [ {"embedding": [0.0]*254} ],
|
||||
"input_token_count": 8
|
||||
}
|
||||
mock_response.is_error = False
|
||||
return mock_response
|
||||
|
||||
mocked_client.send = mock_send
|
||||
|
||||
return mocked_client
|
||||
|
||||
try:
|
||||
litellm.set_verbose = True
|
||||
with patch("httpx.AsyncClient", side_effect=mock_async_client):
|
||||
response = await litellm.aembedding(
|
||||
model="watsonx/ibm/slate-30m-english-rtrvr",
|
||||
input=["good morning from litellm"],
|
||||
token="secret-token"
|
||||
)
|
||||
print(f"response: {response}")
|
||||
assert isinstance(response.usage, litellm.Usage)
|
||||
except litellm.RateLimitError as e:
|
||||
|
|
|
@ -9736,6 +9736,7 @@ class CustomStreamWrapper:
|
|||
or self.custom_llm_provider == "predibase"
|
||||
or self.custom_llm_provider == "databricks"
|
||||
or self.custom_llm_provider == "bedrock"
|
||||
or self.custom_llm_provider == "watsonx"
|
||||
or self.custom_llm_provider in litellm.openai_compatible_endpoints
|
||||
):
|
||||
async for chunk in self.completion_stream:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue