forked from phoenix/litellm-mirror
feat(groq/): add response_format support for groq
Closes https://github.com/BerriAI/litellm/issues/6845
This commit is contained in:
parent
d7f9999cef
commit
42beb618ae
10 changed files with 275 additions and 82 deletions
|
@ -2,6 +2,7 @@
|
||||||
Translate from OpenAI's `/v1/chat/completions` to Groq's `/v1/chat/completions`
|
Translate from OpenAI's `/v1/chat/completions` to Groq's `/v1/chat/completions`
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
import types
|
import types
|
||||||
from typing import List, Optional, Tuple, Union
|
from typing import List, Optional, Tuple, Union
|
||||||
|
|
||||||
|
@ -9,7 +10,12 @@ from pydantic import BaseModel
|
||||||
|
|
||||||
import litellm
|
import litellm
|
||||||
from litellm.secret_managers.main import get_secret_str
|
from litellm.secret_managers.main import get_secret_str
|
||||||
from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
|
from litellm.types.llms.openai import (
|
||||||
|
AllMessageValues,
|
||||||
|
ChatCompletionAssistantMessage,
|
||||||
|
ChatCompletionToolParam,
|
||||||
|
ChatCompletionToolParamFunctionChunk,
|
||||||
|
)
|
||||||
|
|
||||||
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
|
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
|
||||||
|
|
||||||
|
@ -108,3 +114,60 @@ class GroqChatConfig(OpenAIGPTConfig):
|
||||||
return True
|
return True
|
||||||
|
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
def _create_json_tool_call_for_response_format(
|
||||||
|
self,
|
||||||
|
json_schema: dict,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Handles creating a tool call for getting responses in JSON format.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
json_schema (Optional[dict]): The JSON schema the response should be in
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
AnthropicMessagesTool: The tool call to send to Anthropic API to get responses in JSON format
|
||||||
|
"""
|
||||||
|
return ChatCompletionToolParam(
|
||||||
|
type="function",
|
||||||
|
function=ChatCompletionToolParamFunctionChunk(
|
||||||
|
name="json_tool_call",
|
||||||
|
parameters=json_schema,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
def map_openai_params(
|
||||||
|
self,
|
||||||
|
non_default_params: dict,
|
||||||
|
optional_params: dict,
|
||||||
|
model: str,
|
||||||
|
drop_params: bool = False,
|
||||||
|
) -> dict:
|
||||||
|
_response_format = non_default_params.get("response_format")
|
||||||
|
if _response_format is not None and isinstance(_response_format, dict):
|
||||||
|
json_schema: Optional[dict] = None
|
||||||
|
if "response_schema" in _response_format:
|
||||||
|
json_schema = _response_format["response_schema"]
|
||||||
|
elif "json_schema" in _response_format:
|
||||||
|
json_schema = _response_format["json_schema"]["schema"]
|
||||||
|
"""
|
||||||
|
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
|
||||||
|
- You usually want to provide a single tool
|
||||||
|
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
|
||||||
|
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
|
||||||
|
"""
|
||||||
|
if json_schema is not None:
|
||||||
|
_tool_choice = {
|
||||||
|
"type": "function",
|
||||||
|
"function": {"name": "json_tool_call"},
|
||||||
|
}
|
||||||
|
_tool = self._create_json_tool_call_for_response_format(
|
||||||
|
json_schema=json_schema,
|
||||||
|
)
|
||||||
|
optional_params["tools"] = [_tool]
|
||||||
|
optional_params["tool_choice"] = _tool_choice
|
||||||
|
optional_params["json_mode"] = True
|
||||||
|
non_default_params.pop("response_format", None)
|
||||||
|
return super().map_openai_params(
|
||||||
|
non_default_params, optional_params, model, drop_params
|
||||||
|
)
|
||||||
|
|
|
@ -39,6 +39,7 @@ from litellm.utils import (
|
||||||
)
|
)
|
||||||
|
|
||||||
from ..common_utils import OpenAILikeBase, OpenAILikeError
|
from ..common_utils import OpenAILikeBase, OpenAILikeError
|
||||||
|
from .transformation import OpenAILikeChatConfig
|
||||||
|
|
||||||
|
|
||||||
async def make_call(
|
async def make_call(
|
||||||
|
@ -190,6 +191,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
||||||
logger_fn=None,
|
logger_fn=None,
|
||||||
headers={},
|
headers={},
|
||||||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||||
|
json_mode: bool = False,
|
||||||
) -> ModelResponse:
|
) -> ModelResponse:
|
||||||
if timeout is None:
|
if timeout is None:
|
||||||
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
|
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
|
||||||
|
@ -202,8 +204,6 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
||||||
api_base, headers=headers, data=json.dumps(data), timeout=timeout
|
api_base, headers=headers, data=json.dumps(data), timeout=timeout
|
||||||
)
|
)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
|
|
||||||
response_json = response.json()
|
|
||||||
except httpx.HTTPStatusError as e:
|
except httpx.HTTPStatusError as e:
|
||||||
raise OpenAILikeError(
|
raise OpenAILikeError(
|
||||||
status_code=e.response.status_code,
|
status_code=e.response.status_code,
|
||||||
|
@ -214,19 +214,22 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise OpenAILikeError(status_code=500, message=str(e))
|
raise OpenAILikeError(status_code=500, message=str(e))
|
||||||
|
|
||||||
logging_obj.post_call(
|
return OpenAILikeChatConfig._transform_response(
|
||||||
input=messages,
|
model=model,
|
||||||
api_key="",
|
response=response,
|
||||||
original_response=response_json,
|
model_response=model_response,
|
||||||
additional_args={"complete_input_dict": data},
|
stream=stream,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
optional_params=optional_params,
|
||||||
|
api_key=api_key,
|
||||||
|
data=data,
|
||||||
|
messages=messages,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
encoding=encoding,
|
||||||
|
json_mode=json_mode,
|
||||||
|
custom_llm_provider=custom_llm_provider,
|
||||||
|
base_model=base_model,
|
||||||
)
|
)
|
||||||
response = ModelResponse(**response_json)
|
|
||||||
|
|
||||||
response.model = custom_llm_provider + "/" + (response.model or "")
|
|
||||||
|
|
||||||
if base_model is not None:
|
|
||||||
response._hidden_params["model"] = base_model
|
|
||||||
return response
|
|
||||||
|
|
||||||
def completion(
|
def completion(
|
||||||
self,
|
self,
|
||||||
|
@ -268,6 +271,7 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
||||||
|
|
||||||
stream: bool = optional_params.pop("stream", None) or False
|
stream: bool = optional_params.pop("stream", None) or False
|
||||||
extra_body = optional_params.pop("extra_body", {})
|
extra_body = optional_params.pop("extra_body", {})
|
||||||
|
json_mode = optional_params.pop("json_mode", None)
|
||||||
if not fake_stream:
|
if not fake_stream:
|
||||||
optional_params["stream"] = stream
|
optional_params["stream"] = stream
|
||||||
|
|
||||||
|
@ -390,17 +394,19 @@ class OpenAILikeChatHandler(OpenAILikeBase):
|
||||||
)
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise OpenAILikeError(status_code=500, message=str(e))
|
raise OpenAILikeError(status_code=500, message=str(e))
|
||||||
logging_obj.post_call(
|
return OpenAILikeChatConfig._transform_response(
|
||||||
input=messages,
|
model=model,
|
||||||
api_key="",
|
response=response,
|
||||||
original_response=response_json,
|
model_response=model_response,
|
||||||
additional_args={"complete_input_dict": data},
|
stream=stream,
|
||||||
|
logging_obj=logging_obj,
|
||||||
|
optional_params=optional_params,
|
||||||
|
api_key=api_key,
|
||||||
|
data=data,
|
||||||
|
messages=messages,
|
||||||
|
print_verbose=print_verbose,
|
||||||
|
encoding=encoding,
|
||||||
|
json_mode=json_mode,
|
||||||
|
custom_llm_provider=custom_llm_provider,
|
||||||
|
base_model=base_model,
|
||||||
)
|
)
|
||||||
response = ModelResponse(**response_json)
|
|
||||||
|
|
||||||
response.model = custom_llm_provider + "/" + (response.model or "")
|
|
||||||
|
|
||||||
if base_model is not None:
|
|
||||||
response._hidden_params["model"] = base_model
|
|
||||||
|
|
||||||
return response
|
|
||||||
|
|
98
litellm/llms/openai_like/chat/transformation.py
Normal file
98
litellm/llms/openai_like/chat/transformation.py
Normal file
|
@ -0,0 +1,98 @@
|
||||||
|
"""
|
||||||
|
OpenAI-like chat completion transformation
|
||||||
|
"""
|
||||||
|
|
||||||
|
import types
|
||||||
|
from typing import List, Optional, Tuple, Union
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
import litellm
|
||||||
|
from litellm.secret_managers.main import get_secret_str
|
||||||
|
from litellm.types.llms.openai import AllMessageValues, ChatCompletionAssistantMessage
|
||||||
|
from litellm.types.utils import ModelResponse
|
||||||
|
|
||||||
|
from ....utils import _remove_additional_properties, _remove_strict_from_schema
|
||||||
|
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
|
||||||
|
|
||||||
|
|
||||||
|
class OpenAILikeChatConfig(OpenAIGPTConfig):
|
||||||
|
def _get_openai_compatible_provider_info(
|
||||||
|
self, api_base: Optional[str], api_key: Optional[str]
|
||||||
|
) -> Tuple[Optional[str], Optional[str]]:
|
||||||
|
api_base = api_base or get_secret_str("OPENAI_LIKE_API_BASE") # type: ignore
|
||||||
|
dynamic_api_key = (
|
||||||
|
api_key or get_secret_str("OPENAI_LIKE_API_KEY") or ""
|
||||||
|
) # vllm does not require an api key
|
||||||
|
return api_base, dynamic_api_key
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _convert_tool_response_to_message(
|
||||||
|
message: ChatCompletionAssistantMessage, json_mode: bool
|
||||||
|
) -> ChatCompletionAssistantMessage:
|
||||||
|
"""
|
||||||
|
if json_mode is true, convert the returned tool call response to a content with json str
|
||||||
|
|
||||||
|
e.g. input:
|
||||||
|
|
||||||
|
{"role": "assistant", "tool_calls": [{"id": "call_5ms4", "type": "function", "function": {"name": "json_tool_call", "arguments": "{\"key\": \"question\", \"value\": \"What is the capital of France?\"}"}}]}
|
||||||
|
|
||||||
|
output:
|
||||||
|
|
||||||
|
{"role": "assistant", "content": "{\"key\": \"question\", \"value\": \"What is the capital of France?\"}"}
|
||||||
|
"""
|
||||||
|
if not json_mode:
|
||||||
|
return message
|
||||||
|
|
||||||
|
_tool_calls = message.get("tool_calls")
|
||||||
|
|
||||||
|
if _tool_calls is None or len(_tool_calls) != 1:
|
||||||
|
return message
|
||||||
|
|
||||||
|
message["content"] = _tool_calls[0]["function"].get("arguments") or ""
|
||||||
|
message["tool_calls"] = None
|
||||||
|
|
||||||
|
return message
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _transform_response(
|
||||||
|
model: str,
|
||||||
|
response: httpx.Response,
|
||||||
|
model_response: ModelResponse,
|
||||||
|
stream: bool,
|
||||||
|
logging_obj: litellm.litellm_core_utils.litellm_logging.Logging, # type: ignore
|
||||||
|
optional_params: dict,
|
||||||
|
api_key: Optional[str],
|
||||||
|
data: Union[dict, str],
|
||||||
|
messages: List,
|
||||||
|
print_verbose,
|
||||||
|
encoding,
|
||||||
|
json_mode: bool,
|
||||||
|
custom_llm_provider: str,
|
||||||
|
base_model: Optional[str],
|
||||||
|
) -> ModelResponse:
|
||||||
|
response_json = response.json()
|
||||||
|
logging_obj.post_call(
|
||||||
|
input=messages,
|
||||||
|
api_key="",
|
||||||
|
original_response=response_json,
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
|
)
|
||||||
|
|
||||||
|
if json_mode:
|
||||||
|
for choice in response_json["choices"]:
|
||||||
|
message = OpenAILikeChatConfig._convert_tool_response_to_message(
|
||||||
|
choice.get("message"), json_mode
|
||||||
|
)
|
||||||
|
choice["message"] = message
|
||||||
|
|
||||||
|
returned_response = ModelResponse(**response_json)
|
||||||
|
|
||||||
|
returned_response.model = (
|
||||||
|
custom_llm_provider + "/" + (returned_response.model or "")
|
||||||
|
)
|
||||||
|
|
||||||
|
if base_model is not None:
|
||||||
|
returned_response._hidden_params["model"] = base_model
|
||||||
|
return returned_response
|
|
@ -1495,7 +1495,6 @@ def completion( # type: ignore # noqa: PLR0915
|
||||||
timeout=timeout, # type: ignore
|
timeout=timeout, # type: ignore
|
||||||
custom_prompt_dict=custom_prompt_dict,
|
custom_prompt_dict=custom_prompt_dict,
|
||||||
client=client, # pass AsyncOpenAI, OpenAI client
|
client=client, # pass AsyncOpenAI, OpenAI client
|
||||||
organization=organization,
|
|
||||||
custom_llm_provider=custom_llm_provider,
|
custom_llm_provider=custom_llm_provider,
|
||||||
encoding=encoding,
|
encoding=encoding,
|
||||||
)
|
)
|
||||||
|
|
|
@ -1745,7 +1745,8 @@
|
||||||
"output_cost_per_token": 0.00000080,
|
"output_cost_per_token": 0.00000080,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/llama3-8b-8192": {
|
"groq/llama3-8b-8192": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1755,7 +1756,8 @@
|
||||||
"output_cost_per_token": 0.00000008,
|
"output_cost_per_token": 0.00000008,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/llama3-70b-8192": {
|
"groq/llama3-70b-8192": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1765,7 +1767,8 @@
|
||||||
"output_cost_per_token": 0.00000079,
|
"output_cost_per_token": 0.00000079,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/llama-3.1-8b-instant": {
|
"groq/llama-3.1-8b-instant": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1775,7 +1778,8 @@
|
||||||
"output_cost_per_token": 0.00000008,
|
"output_cost_per_token": 0.00000008,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/llama-3.1-70b-versatile": {
|
"groq/llama-3.1-70b-versatile": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1785,7 +1789,8 @@
|
||||||
"output_cost_per_token": 0.00000079,
|
"output_cost_per_token": 0.00000079,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/llama-3.1-405b-reasoning": {
|
"groq/llama-3.1-405b-reasoning": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1795,7 +1800,8 @@
|
||||||
"output_cost_per_token": 0.00000079,
|
"output_cost_per_token": 0.00000079,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/mixtral-8x7b-32768": {
|
"groq/mixtral-8x7b-32768": {
|
||||||
"max_tokens": 32768,
|
"max_tokens": 32768,
|
||||||
|
@ -1805,7 +1811,8 @@
|
||||||
"output_cost_per_token": 0.00000024,
|
"output_cost_per_token": 0.00000024,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/gemma-7b-it": {
|
"groq/gemma-7b-it": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1815,7 +1822,8 @@
|
||||||
"output_cost_per_token": 0.00000007,
|
"output_cost_per_token": 0.00000007,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/gemma2-9b-it": {
|
"groq/gemma2-9b-it": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1825,7 +1833,8 @@
|
||||||
"output_cost_per_token": 0.00000020,
|
"output_cost_per_token": 0.00000020,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/llama3-groq-70b-8192-tool-use-preview": {
|
"groq/llama3-groq-70b-8192-tool-use-preview": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1835,7 +1844,8 @@
|
||||||
"output_cost_per_token": 0.00000089,
|
"output_cost_per_token": 0.00000089,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/llama3-groq-8b-8192-tool-use-preview": {
|
"groq/llama3-groq-8b-8192-tool-use-preview": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1845,7 +1855,8 @@
|
||||||
"output_cost_per_token": 0.00000019,
|
"output_cost_per_token": 0.00000019,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"cerebras/llama3.1-8b": {
|
"cerebras/llama3.1-8b": {
|
||||||
"max_tokens": 128000,
|
"max_tokens": 128000,
|
||||||
|
|
|
@ -1739,15 +1739,15 @@ def supports_response_schema(model: str, custom_llm_provider: Optional[str]) ->
|
||||||
|
|
||||||
Does not raise error. Defaults to 'False'. Outputs logging.error.
|
Does not raise error. Defaults to 'False'. Outputs logging.error.
|
||||||
"""
|
"""
|
||||||
|
## GET LLM PROVIDER ##
|
||||||
|
model, custom_llm_provider, _, _ = get_llm_provider(
|
||||||
|
model=model, custom_llm_provider=custom_llm_provider
|
||||||
|
)
|
||||||
|
|
||||||
|
if custom_llm_provider == "predibase": # predibase supports this globally
|
||||||
|
return True
|
||||||
|
|
||||||
try:
|
try:
|
||||||
## GET LLM PROVIDER ##
|
|
||||||
model, custom_llm_provider, _, _ = get_llm_provider(
|
|
||||||
model=model, custom_llm_provider=custom_llm_provider
|
|
||||||
)
|
|
||||||
|
|
||||||
if custom_llm_provider == "predibase": # predibase supports this globally
|
|
||||||
return True
|
|
||||||
|
|
||||||
## GET MODEL INFO
|
## GET MODEL INFO
|
||||||
model_info = litellm.get_model_info(
|
model_info = litellm.get_model_info(
|
||||||
model=model, custom_llm_provider=custom_llm_provider
|
model=model, custom_llm_provider=custom_llm_provider
|
||||||
|
@ -1755,12 +1755,17 @@ def supports_response_schema(model: str, custom_llm_provider: Optional[str]) ->
|
||||||
|
|
||||||
if model_info.get("supports_response_schema", False) is True:
|
if model_info.get("supports_response_schema", False) is True:
|
||||||
return True
|
return True
|
||||||
return False
|
|
||||||
except Exception:
|
except Exception:
|
||||||
verbose_logger.error(
|
## check if provider supports response schema globally
|
||||||
f"Model not supports response_schema. You passed model={model}, custom_llm_provider={custom_llm_provider}."
|
supported_params = get_supported_openai_params(
|
||||||
|
model=model,
|
||||||
|
custom_llm_provider=custom_llm_provider,
|
||||||
|
request_type="chat_completion",
|
||||||
)
|
)
|
||||||
return False
|
if supported_params is not None and "response_schema" in supported_params:
|
||||||
|
return True
|
||||||
|
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
def supports_function_calling(
|
def supports_function_calling(
|
||||||
|
@ -2710,6 +2715,7 @@ def get_optional_params( # noqa: PLR0915
|
||||||
non_default_params["response_format"] = type_to_response_format_param(
|
non_default_params["response_format"] = type_to_response_format_param(
|
||||||
response_format=non_default_params["response_format"]
|
response_format=non_default_params["response_format"]
|
||||||
)
|
)
|
||||||
|
|
||||||
if "tools" in non_default_params and isinstance(
|
if "tools" in non_default_params and isinstance(
|
||||||
non_default_params, list
|
non_default_params, list
|
||||||
): # fixes https://github.com/BerriAI/litellm/issues/4933
|
): # fixes https://github.com/BerriAI/litellm/issues/4933
|
||||||
|
@ -3494,24 +3500,16 @@ def get_optional_params( # noqa: PLR0915
|
||||||
)
|
)
|
||||||
_check_valid_arg(supported_params=supported_params)
|
_check_valid_arg(supported_params=supported_params)
|
||||||
|
|
||||||
if temperature is not None:
|
optional_params = litellm.GroqChatConfig().map_openai_params(
|
||||||
optional_params["temperature"] = temperature
|
non_default_params=non_default_params,
|
||||||
if max_tokens is not None:
|
optional_params=optional_params,
|
||||||
optional_params["max_tokens"] = max_tokens
|
model=model,
|
||||||
if top_p is not None:
|
drop_params=(
|
||||||
optional_params["top_p"] = top_p
|
drop_params
|
||||||
if stream is not None:
|
if drop_params is not None and isinstance(drop_params, bool)
|
||||||
optional_params["stream"] = stream
|
else False
|
||||||
if stop is not None:
|
),
|
||||||
optional_params["stop"] = stop
|
)
|
||||||
if tools is not None:
|
|
||||||
optional_params["tools"] = tools
|
|
||||||
if tool_choice is not None:
|
|
||||||
optional_params["tool_choice"] = tool_choice
|
|
||||||
if response_format is not None:
|
|
||||||
optional_params["response_format"] = response_format
|
|
||||||
if seed is not None:
|
|
||||||
optional_params["seed"] = seed
|
|
||||||
elif custom_llm_provider == "deepseek":
|
elif custom_llm_provider == "deepseek":
|
||||||
supported_params = get_supported_openai_params(
|
supported_params = get_supported_openai_params(
|
||||||
model=model, custom_llm_provider=custom_llm_provider
|
model=model, custom_llm_provider=custom_llm_provider
|
||||||
|
|
|
@ -1745,7 +1745,8 @@
|
||||||
"output_cost_per_token": 0.00000080,
|
"output_cost_per_token": 0.00000080,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/llama3-8b-8192": {
|
"groq/llama3-8b-8192": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1755,7 +1756,8 @@
|
||||||
"output_cost_per_token": 0.00000008,
|
"output_cost_per_token": 0.00000008,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/llama3-70b-8192": {
|
"groq/llama3-70b-8192": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1765,7 +1767,8 @@
|
||||||
"output_cost_per_token": 0.00000079,
|
"output_cost_per_token": 0.00000079,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/llama-3.1-8b-instant": {
|
"groq/llama-3.1-8b-instant": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1775,7 +1778,8 @@
|
||||||
"output_cost_per_token": 0.00000008,
|
"output_cost_per_token": 0.00000008,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/llama-3.1-70b-versatile": {
|
"groq/llama-3.1-70b-versatile": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1785,7 +1789,8 @@
|
||||||
"output_cost_per_token": 0.00000079,
|
"output_cost_per_token": 0.00000079,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/llama-3.1-405b-reasoning": {
|
"groq/llama-3.1-405b-reasoning": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1795,7 +1800,8 @@
|
||||||
"output_cost_per_token": 0.00000079,
|
"output_cost_per_token": 0.00000079,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/mixtral-8x7b-32768": {
|
"groq/mixtral-8x7b-32768": {
|
||||||
"max_tokens": 32768,
|
"max_tokens": 32768,
|
||||||
|
@ -1805,7 +1811,8 @@
|
||||||
"output_cost_per_token": 0.00000024,
|
"output_cost_per_token": 0.00000024,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/gemma-7b-it": {
|
"groq/gemma-7b-it": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1815,7 +1822,8 @@
|
||||||
"output_cost_per_token": 0.00000007,
|
"output_cost_per_token": 0.00000007,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/gemma2-9b-it": {
|
"groq/gemma2-9b-it": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1825,7 +1833,8 @@
|
||||||
"output_cost_per_token": 0.00000020,
|
"output_cost_per_token": 0.00000020,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/llama3-groq-70b-8192-tool-use-preview": {
|
"groq/llama3-groq-70b-8192-tool-use-preview": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1835,7 +1844,8 @@
|
||||||
"output_cost_per_token": 0.00000089,
|
"output_cost_per_token": 0.00000089,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"groq/llama3-groq-8b-8192-tool-use-preview": {
|
"groq/llama3-groq-8b-8192-tool-use-preview": {
|
||||||
"max_tokens": 8192,
|
"max_tokens": 8192,
|
||||||
|
@ -1845,7 +1855,8 @@
|
||||||
"output_cost_per_token": 0.00000019,
|
"output_cost_per_token": 0.00000019,
|
||||||
"litellm_provider": "groq",
|
"litellm_provider": "groq",
|
||||||
"mode": "chat",
|
"mode": "chat",
|
||||||
"supports_function_calling": true
|
"supports_function_calling": true,
|
||||||
|
"supports_response_schema": true
|
||||||
},
|
},
|
||||||
"cerebras/llama3.1-8b": {
|
"cerebras/llama3.1-8b": {
|
||||||
"max_tokens": 128000,
|
"max_tokens": 128000,
|
||||||
|
|
|
@ -93,6 +93,7 @@ class BaseLLMChatTest(ABC):
|
||||||
assert response.choices[0].message.content is not None
|
assert response.choices[0].message.content is not None
|
||||||
|
|
||||||
def test_json_response_pydantic_obj(self):
|
def test_json_response_pydantic_obj(self):
|
||||||
|
litellm.set_verbose = True
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
from litellm.utils import supports_response_schema
|
from litellm.utils import supports_response_schema
|
||||||
|
|
||||||
|
@ -119,6 +120,11 @@ class BaseLLMChatTest(ABC):
|
||||||
response_format=TestModel,
|
response_format=TestModel,
|
||||||
)
|
)
|
||||||
assert res is not None
|
assert res is not None
|
||||||
|
|
||||||
|
print(res.choices[0].message)
|
||||||
|
|
||||||
|
assert res.choices[0].message.content is not None
|
||||||
|
assert res.choices[0].message.tool_calls is None
|
||||||
except litellm.InternalServerError:
|
except litellm.InternalServerError:
|
||||||
pytest.skip("Model is overloaded")
|
pytest.skip("Model is overloaded")
|
||||||
|
|
||||||
|
|
|
@ -4,7 +4,7 @@ from base_llm_unit_tests import BaseLLMChatTest
|
||||||
class TestGroq(BaseLLMChatTest):
|
class TestGroq(BaseLLMChatTest):
|
||||||
def get_base_completion_call_args(self) -> dict:
|
def get_base_completion_call_args(self) -> dict:
|
||||||
return {
|
return {
|
||||||
"model": "groq/llama3-70b-8192",
|
"model": "groq/llama-3.1-70b-versatile",
|
||||||
}
|
}
|
||||||
|
|
||||||
def test_tool_call_no_arguments(self, tool_call_no_arguments):
|
def test_tool_call_no_arguments(self, tool_call_no_arguments):
|
||||||
|
|
|
@ -749,6 +749,7 @@ def test_convert_model_response_object():
|
||||||
("gemini/gemini-1.5-pro", True),
|
("gemini/gemini-1.5-pro", True),
|
||||||
("predibase/llama3-8b-instruct", True),
|
("predibase/llama3-8b-instruct", True),
|
||||||
("gpt-3.5-turbo", False),
|
("gpt-3.5-turbo", False),
|
||||||
|
("groq/llama3-70b-8192", True),
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
def test_supports_response_schema(model, expected_bool):
|
def test_supports_response_schema(model, expected_bool):
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue